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“A doctrine of nature can only contain  

so much science proper as there 

 is in it of applied mathematics.” 

        - Immanuel Kant (Ernest Belfort Bax 1786) 
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1 Abstract 

The overall aim of this project was to investigate the fundamental phenotypic traits of 

a cancer cell to develop an “in silico” simulation model and, vice versa redefine the 

identified characteristics via the established simulation model. Thus, the focus lay on 

visualization and interactivity of the simulation.  

The previously identified hallmark characteristics (Groten et al., 2016, DOI: 

10.17160/josha.3.7.252) were described by mathematical algorithms. Subsequently, 

a computational simulation of carcinogenesis has been drawn up employing these 

mathematical algorithms. In the next step, the proposed algorithms and correlations 

have been tested, validated and adapted through the simulation in several repetitive 

phases (http://mertelsmann.psiori.com/). 

In a second model, we transferred the novel insights won from the first simulation to 

the simulation of hematopoietic tissue homeostasis and leukemogenesis (http://hem-

model.psiori.com/hema_simulation). 

Our findings indicate that the ten “Hallmarks” proposed by Hanahan and Weinberg 

can be assigned to two different groups, “Growth/Apoptosis Balance” and “Genetic 

Fidelity/Immortality”, and that carcinogenesis requires just one alteration in each 

pathway group. Modeling Hematopoiesis revealed one missing Hallmark Capability, 

“Block of Differentiation”, which we propose to assign to the broader term “Stem Cell 

Features”.  

In summary, we have developed two simulation models, which both depict previous 

assertions as well as provide novel unexpected, hypothesis generating and possibly 

underestimated insights and should be increasingly incorporated into prospective 

oncologic research. This approach promises to contribute to a novel type of evidence 

and hypothesis generation in cancer research, especially in conjunction with Machine 

Learning tools, which allow time-lapse experiments, independent self-learning of a 

system and, thus, full exploitation of computational power. 
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3 Introduction 

This introduction has been previously published (Groten et al., 2016) since it is 

pertinent to the previous and the current publication. 

3.1 Preface 

“Cancer is a leading cause of death, and cancer incidence is expected to increase 

worldwide in the coming decades. But today, cancer research is on the cusp of 

major breakthroughs. It is of critical […] importance that we accelerate progress 

towards prevention, treatment, and a cure -- to double the rate of progress in the 

fight against cancer -- and put ourselves on a path to achieve in just 5 years 

research and treatment gains that otherwise might take a decade or more.”  

(Barack Obama, January 28, 2016) 

With this statement, the President of the United States recently laid the foundations 

to reenter the fray against cancer (Obama 2016). Calling for a new initiative, 

headed by Vice-President Biden, he established the “White House Cancer 

Moonshot Task Force”, consisting of members of various departments, to unite 

researchers, oncologists, patient representatives, economists, politicians and 

philanthropists in the envisaged revolution of the cancer research landscape (Lowy 

& Collins 2016).  In fact, cancer is still the second-leading cause of death after 

cardiovascular diseases in Germany (Bundesamt 2014) as well as worldwide (WHO 

2016b). Cancer mortality rates apparently have diminished during the last 25 years 

(Lowy & Collins 2016; IARC 2016b). However, according to the World Health 

Organization (WHO) the worldwide incidence of cancer is estimated to increase by 

about 70 % in the next two decades, which means an absolute number of annual 

cancer cases of up to 22 million instead of 14 million in 2012 (WHO 2016a). In the 

face of these alarming data, one might assume that an international commitment to 

cure cancer once and for all is more than overdue. However, in fact, in the long 

struggle against cancer, it is not the first governmental attempt to raise the cancer 

issue on a national, and thereby, public and more intense level. On the contrary, it 

was President Franklin D. Roosevelt who established the National Cancer Institute 

(NCI) with the help of the National Cancer Act of 1937 (National Cancer Institute 
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2016a). Later, on December 23, 1971, his successor President Richard Nixon 

signed into law the National Cancer Act of 1971 to make the “Conquest of Cancer 

[…] a national crusade”. It should broaden the role of the National Cancer Institute 

(NCI), at that time a part of the National Institutes of Health (NIH), and extended its 

mandate to the future application of the research results to decrease the incidence, 

morbidity, and mortality due to cancer (National Cancer Institute 2016b). In Europe, 

several national and international associations with similar aims were founded. In 

1933, the Union Internationale Contre le Cancer (UICC) was founded in Geneva 

(UICC 2014). Later, the International Agency for Research on Cancer (IARC) was 

established as the specialized cancer agency of the World Health Organization 

(WHO) (IARC 2016a). In Germany the Deutsches Krebsforschungszentrum (DKFZ) 

was formed in 1964 (Deutsches Krebsforschungszentrum 2016). The research 

objectives of the current campaigns, ranging from cancer vaccines to data sharing 

and the promotion of innovative and exceptional approaches, obviously reflect the 

urge to rethink the oncologic research landscape (Lowy & Collins 2016). In the time 

of big data and information sharing the focus increasingly lies in data collection, 

analysis, evaluation and implementation. One compelling example is the massive 

decoding of the human cancer genome through next-generation DNA sequencing 

(Hayes & Kim 2015). Paradoxically, at first sight, a major shift in patient care takes 

place at the same time, edging away from Evidence-Based Medicine (EBM) to a 

Personalized Medicine (PM) (Sugarman 2012a). In PM, patients are individually 

diagnosed and treated with innovative treatments, far off the beaten track, are given 

a place. This movement can undoubtedly be rated as a major turning point in the 

history of cancer research, which has been focused on detecting regularities and 

defining classifications for a long time. Here, the role of Bioinformatics becomes 

inevitable to enable big data and PM to go hand by hand allowing novel and 

innovative perspectives, where traditional EBM has recognized its limitations. 

Knowledge and data regarding the carcinogenesis process and cancer treatment 



 

 7  

have increased dramatically and have finally reached an unmanageable complexity. 

Common lab experiments and clinical trial tools can no longer provide adequate 

opportunities to investigate carcinogenesis and cancer treatment as a whole or even 

its sheer endless number of subunits and possible interactions. A result is the 

reductionist approach leading to delusive selective insights into complex biologic 

processes, similar to the parable of the blind monks examining an elephant, who all 

fail to recognize the creature as a whole, since they only examined a small part each 

(Fig. 1). This approach, by far, does not satisfy cellular heterogeneity and “noise”, 

two fundamental characteristics of cellular and system behavior (Walker & Southgate 

2009). Bioinformatics provides a solution, implementing mathematical models and 

information theory, which bring along massive computational power exceeding the 

limited capacity of the human mind, to address the complexity of data, correlations, 

and calculations. These so called in silico experiments and analyses are time-saving 

and, nevertheless, encompassing and lead to in-depth results. Thereby, analytical 

models can be distinguished from simulation models. Analytical models have 

experienced broad implementation during the last decade, for example, regression 

analyses have been used for statistical purposes, such as the prediction of affinity 

profiles of nucleic acid-binding protein from the protein sequence (Pelossof et al. 

2015). In contrast, simulation models have hardly received attention, despite a broad 

and fruitful application in other disciplines, such as engineering, economics or some 

aspects of biology, where it has become the state-of-the-art solution for 

understanding and optimizing processes 

and complex systems (Suthaharan 2016; 

Sütterlin 2015). In both analytical and 

simulating model types, machine learning 

can be applied by means of self-teaching 

systems which are equipped with basic 

parameters, fundamental conditions and 

feedback mechanisms to evaluate target 

parameters. It shows the significant 

advantage of optimizing a process without 

an entire knowledge of the actual 

mechanisms, parameters, and measurements and, therefore, increases the 

probability of unexpected outcomes (Riedmiller et al. 2009). In comparison to 

Figure 1 Blind monks examining an elephant, 
Hanabusa Itcho, 
https://en.wikipedia.org/wiki/Blind_men_and_an_eleph
ant, 2016 
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analytical models, simulation models provide various benefits. Probably, the most 

essential aspect is the additional dimension of a simulation, time. This supplement 

allows the observation and calculation of a development over time and further 

enables the evaluation of data at any arbitrary point in time. Moreover, a simulation 

represents a tool to visualize processes and, thereby, increase comprehension of 

mechanisms and operations. An additional feature, which seems quite essential in 

scientific research, is the possibility to alter an ongoing process by adjusting any 

parameter at any discretionary time and directly achieve tangible results. Regarding 

the investigation of cell behavior and system interactions, simulations allow a 

“middle-out” approach, instead of common “top-down” or “bottom-up” models, 

focusing on the cell, as the “basic unit of life” (Walker & Southgate 2009).  

A typical example of the exploitation of the aforementioned simulation features 

including machine learning tools, is the investigation of evolutionary processes, 

which are by nature determined by probability and chance and bear a great 

potential to evolve unpredictable effects (Mertelsmann & Georg 2016). 

In sight of the widely accepted hypothesis of carcinogenesis as an evolutionary 

development (Almendro et al. 2013; Beerenwinkel et al. 2015; Cairns 1975; Klein 

2013; Greaves & Maley 2012; Hanahan & Weinberg 2011; Merlo et al. 2006; Nowell 

1976; Vogelstein et al. 2013; Willyard 2016) it seems reasonable indeed to 

establish the use of machine learning, simulation models in particular, in cancer 

research. Recent emphasis on the pivotal role of chance in the development of 

malignant diseases (Tomasetti & Vogelstein 2015; Luzzatto & Pandolfi 2015) even 

fosters the perception of simulation models as the next logical step in the 

investigation of carcinogenesis.  

 

“It is the quality of our work which will please God and not the quantity.” 

- Mahatma Gandhi (Alli 2013) 

While current cancer research focuses on data generation, the next major step 

promises to be a view from a meta-level by exploring data analysis, which, 

hopefully, will lead to better understanding and novel concepts of cancer 

prevention, diagnosis, control and therapy. 

 

3.2 Aims and Objectives 



 

 9  

To address the need for in silico simulation models mentioned above, we want to 

provide a visually attractive and interactive, and at the same time plausible and 

qualitatively valid simulation model of carcinogenesis and cancer treatment, 

developed from experimental data. Thereby, the overall objective is to offer a novel 

tool for basic, clinical and therapeutic research, as well as a teaching tool to make in 

silico research tangible and applicable to a wide audience.  

In the present research, the focus lies on the collection and review of relevant data, 

the formation process of the developed simulations and the first qualitative validation 

process. In this context, the term validation is used to document the close 

resemblance of the qualitative prediction of the in silico simulation and real-life 

biological and clinical data extracted from the relevant literature. 

To accomplish this aim, we will address the following research objectives: 

1. Identify the essential “Hallmarks of Cancer”, based on literature review. The 

term “Hallmarks of Cancer” was adopted from Hanahan and Weinberg 

(Hanahan & Weinberg 2000; Hanahan & Weinberg 2011) and defines the 

most fundamental phenotypic characteristics of cancer cells, which are 

assumed to distinguish the latter from normal cells.  

2. Consider literature about the history of cancer research, the hallmarks of 

cancer, presented by Hanahan and Weinberg, the genetic hallmarks with a 

focus on gene expression, the principles of evolution, entropy and chance in 

cancer, the basis of cancer treatment and recent research strategies to 

develop a new concept of phenotypic cancer hallmarks. 

3. Evaluate and synthesize the elaborated hallmark capabilities. 

4. Develop mathematical models and algorithms to describe the hallmark 

characteristics of carcinogenesis. 

5. Develop a computational simulation of carcinogenesis based on the 

algorithms. 

6. Test, validate and adapt the algorithms and correlations via repetitive 

simulation phases. 

7. Transfer the insights from the first simulation to a simulation of hematopoiesis. 

8. Simulate hematopoietic tissue homeostasis, the establishment of 

hematopoiesis after stem cell transplantation and leukemogenesis. 

9. Reevaluate the “Hallmark Concept” in the light of the simulation results. 
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4 Materials and Methods 

4.1 Mathematics and Programming 

Mathematical models were developed using the review of pertinent literature. 

Algorithms and conditions described the mathematical models. These algorithms 

were then used to program simulations. Programming languages applied here were 

Python, Java, and JavaScript. For the exact codes, see the Appendix.  

4.2 Validation Process 

4.2.1 Balancing – Visual Validation 

The first validation step, which we performed during the development of the 

simulation, was a tool called “Balancing” (Schell 2015). Here, “Balancing” defines a 

strategy normally applied in Game Design and describes a process of iterative 

observation, testing, and comparison to known evidence and subsequent adaptation 

of the settings of the simulation, until the resulting processes and developments 

visually resemble the processes and mechanisms depicted in pertinent literature and 

seem mainly plausible. This strategy is preferably implemented by several people 

from different perspectives (Schell 2015). 

 

4.2.2 Regression Analysis – Statistical Validation 

The second validation step was a statistical analysis of possible correlations between 

the different parameters by computational regression analysis. For the analysis, we 

applied the function for Ridge Regression (Suthaharan 2016; Pedregosa et. al. 
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2011). Therefore, evolutionary sections of the simulation were eliminated. For the 

analysis, we parameterized both pathways and defined cell characteristics, so that 

their correlations could be investigated.  

After running a pre-loop, settings with all possible combinations of one, two and three 

pathways set to the maximum value were simulated for 6000 ticks, which equaled 

120 days in real time. To achieve better statistical power, they were repeated six 

times each. Every simulation round started with six stem cells. All pathways were set 

to an average level. The pathways to be altered were set to the maximum level. 

During the simulation, the parameterized cell characteristics were measured at pre-

defined points in time. The results were analyzed employing the equation of Ridge 

Regression (Pedregosa et. al. 2011).  

 

 

 

 

 

 

5 Results  

5.1 Modeling and Simulation 

5.1.1 In Silico Research 

5.1.1.1 General 

One tool to address both the rising demands for a more encompassing investigation 

of the processes occurring in malignant diseases as well as for the implication of 

personalized medicine in oncology is the so-called in silico research. The term, 

describing the application of mathematical models, information theory, machine 

learning and computer simulation in biological and medical research, is added to the 

common expressions in vivo and in vitro and was coined to emphasize the equality of 

the role of bioinformatics in biomedical sciences in comparison to traditional research 

methods. It comprises the analysis, visualization, and prediction of natural processes 

by collecting, cataloging, altering and modeling data employing algorithms and 

computation (Nature 2016). Computational analysis thereby allows the processing of 

huge amounts of data as well as the performance of highly theoretical studies and 
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experiments under precise and selected conditions to avoid disturbance variables 

and to minimize the complexity of biological events (Mackey et al. 2015). 

Mathematically, the benefits of information-theoretical analysis lie in the ability to map 

multi-parametric processes and systems, both respecting continuous and discrete 

variables, by the application of measures of “entropy” and “mutual information” (Blokh 

& Stambler 2016). In contrast, the more common reductionist approach leads to 

delusive selective insights into complex biologic processes, which do by far not 

satisfy cellular heterogeneity and “noise”, two fundamental characteristics of cellular 

and system level behavior (Walker & Southgate 2009). 

Information-theoretical methods can be used in different modalities with different 

consequences and desirable outcomes. First, they can serve as a tool to develop 

patterns derived from empirical measures and exploit the full information hidden in 

gathered data. Examples are the construction of probability functions for parameter 

inference or the examination of correlations between different parameters, for 

instance, via linear regression analysis (Mackey et al. 2015; Blokh & Stambler 2016; 

Suthaharan 2016). Second, mathematical models can serve as “proof-of-concept 

tests” of logical predictions in verbal hypotheses and represent valid tests themselves 

to evolve further testable quantitative predictions. As verbal hypotheses, based on 

general assumptions, which are modified deliberately by inclusion and exclusion of 

certain factors, generally follow a chain of logic to draw conclusions, they provide 

ample scope for logical errors and oversight. In contrast, the implication of 

mathematical models facilitates the validation of verbal chains of logic by displaying 

the assumptions above mathematically. To describe a process to be tested properly, 

assumptions have to be made explicit. Thus, the precise nomination and 

characterization of critical assumptions reduce the probability of logical error. 

At last, the described methods cannot only abstract complex data, but they can also 

provide new qualitative data to be further elaborated in empirical research. For 

instance, unknown or underestimated phenomena can be discovered, or 

assumptions hidden in a verbal hypothesis can be detected, as the synthetic system, 

different from a logical chain, can also show counterintuitive outcomes (Mackey et al. 

2015). 

 

5.1.1.2 Analytical versus Simulating Models 



 

 13  

As mentioned above, so-called in silico experiments and analyses allow time-saving 

and, nevertheless, encompassing and in-depth investigations. Apart from the 

aforementioned mathematical models, one can distinguish analytical models from 

simulation models. Analytical models have widely been implemented in biologic and 

cancer research. For instance, the prediction of affinity profiles of nucleic acid-

binding protein from the protein sequence has been achieved via statistical 

regression analyses (Pelossof et al. 2015). In contrast, despite a strong implication 

in other fields, like engineering, economics or some aspects of biology, simulation 

models have barely been applied in oncology. In these disciplines, it has become a 

common solution for understanding and optimization of processes and complex 

multi-parametric systems (Suthaharan 2016; Sütterlin 2015). In contrast to 

analytical models, simulation models provide several advantages. First, the 

additional dimension of a simulation, time, offers a plethora of observational and 

analytical possibilities, as well as the capability to interact simultaneously. It 

enables to observe and calculate a development over time and allows the 

evaluation of data at any arbitrary point in time. Besides, a simulation provides the 

ability of visualization and thereby increases the understanding of mechanisms and 

operations. Additionally, the possibility to interact allows the alteration of ongoing 

processes by adjusting any parameter at any arbitrary time and directly achieve 

visible results. In conclusion, simulations thereby provide a “middle-out” approach 

to the investigation of multiparametric cellular systems, instead of common “top-

down” or “bottom-up” models, focusing on the cell, as the “basic unit of life” (Walker 

& Southgate 2009).  

 

5.1.1.3 Machine Learning 

Both analytical and simulating model types can be extended by the application of 

Machine Learning tools. These tools represent a group of self-teaching systems 

which work with predefined basic parameters, conditions and feedback 

mechanisms to optimize a process due to a chosen end point. It provides the 

benefit that processes can be investigated and optimized without knowledge of the 

entirety of actual mechanisms, parameters, and measurements. Also, the 

probability of unexpected outcomes is high due to the non-deterministic 

prerequisites (Riedmiller et al. 2009).  
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5.1.1.4 Bioinformatics in Evolutionary Biology 

As Evolution is known to be a complex multi-parametric process with a large time 

scale, mathematical models are widely utilized as a solution to the analysis and 

simulation of evolutionary developments (Mackey et al. 2015). 

Evolution bears various phenomena that, additionally, are connected via various 

correlations. To reveal the impact of each factor, as well as the related interaction 

with other factors, one would have to test each evolutionary parameter one at a time 

in a wet-lab experiment, which is simply impossible to perform in sight of the 

immense amount of possibilities. Further, it is impossible to reproduce realistic 

environmental conditions in a lab, as many phenomena exist concurrently. The 

investigation of real organisms, on the other hand, brings along a lack of abstraction 

and control in experiments performed to test hypothesized phenomena. In Silico 

approaches in evolutionary biology represent methods consisting of simulated 

organisms and populations, which are observed and tested in synthetic experiments. 

In these experiments evolutionary conditions of the organisms and the evolutionary 

process, respectively, can be characterized precisely and set perfectly one at a time 

to test the individual effects on the genome and the organization of both the organism 

and the population (Batut et al. 2013). This way simulated organisms can be 

observed during competition and reproduction, while phenomena like “linkage, 

epistasis, demographic and environmental variability and behavior” (Mackey et al. 

2015) are considered. Total control is given by the possibility to apply random, hand-

written or former evolved genomes and to set e.g. the mutation rate, the fitness 

measure or the spatial arrangement of a population. The implication of synthetic 

experiments provides various advantages, for instance, they can be repeated 

limitlessly to gain statistical power. Furthermore, one can observe as many 

generations as necessary and the events, both in genotype and phenotype, can be 

recorded simultaneously. In synthetic experiments, depictions vary from 

mathematical functions to graphs, sequences of nucleotides, 2D- and 3D-simulations 

as well as computer games.  

Previous examples of implications of mathematical models in evolutionary processes 

have led to clarity in areas of the role of sex, the origin of new species (Mackey et al. 

2015) and nucleotide sequences and their functions (Batut et al. 2013). Pelossof et 

al. performed an example of machine learning by the development of an algorithm of 
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“affinity regression” to predict the recognition code of nucleic-acid-binding proteins 

(Pelossof et al. 2015).  

Evolutionary algorithms have also been applied in adversarial games with high 

branching factors and a non-deterministic outcome to achieve the best possible 

action sequence in each turn. A method called “rolling horizon evolution” was used to 

let the controller learn to play on its own, starting from a random population, which is 

enabled to evolve an offspring by uniform crossover and random mutation in the 

subsequent (Justesen et al. n.d.). 

 

5.1.1.5 Bioinformatics in Oncology 

As the perception of cancer as an evolutionary process is widely spread in the 

present research landscape (see above), the aforementioned mathematical models 

and information-theoretical simulations have been applied to oncology in several 

approaches. Advances worth mentioning are for instance the detection of meta-

markers in breast cancer (Blokh et al. 2007), investigations of DNA-methylation 

processes (De Carvalho et al. 2012), revelation of the role of microRNA and proteins 

in prostate cancer (Alshalalfa et al. 2013), the examination of gene-gene- and gene-

environment correlations in bladder cancer (Fan et al. 2011) and the deviation of 

transcriptional profiles in cancer cells (Blokh & Stambler 2016). Furthermore, oligo-

parametric simulation models have been developed to investigate targeted therapy of 

cancer, with the possibilities of cell death and Boolean states of mutations to 

symbolize resistance  (Komarova & Wodarz 2016). Two models that played a crucial 

role as models for the development of our work shall be explained in detail here.  

A spatial 3-dimensional model was developed by Waclaw et al. in 2015 to elucidate 

how cell dispersal and turnover could contribute to rapid cell mixing inside a tumor 

(Fig. 9) (Waclaw, Bozic, Pittman, Hruban, Vogelstein, et al. 2015). They first modeled 

metastasis as an expansion of cancer cells, which have left their primary site, 

assumed to have acquired all necessary driver gene mutations in advance. Then 

they let cells replicate stochastically according to the number of surrounding empty 

spaces. They found that a cell without any neighboring cells replicates at the maximal 

rate of  

 

b = ln (2) = 0.69 ^ (-1)  (Waclaw, Bozic, Pittman, Hruban, Vogelstein, et al. 2015), 
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whereas a surrounded cell does not replicate at all. 

Assuming that a cell moves with the probability M to a certain place near the surface 

of the lesion, comparable to short-range migration due to an epithelial-to-

mesenchymal transition (EMT), they observed that cells with little dispersal (M=0) 

build strictly spherical tumors at larger size, while cells with dispersal M>1 derive 

conglomerates of several small round structures. This outcome proved to be 

equivalent to observations made in real metastatic lesions, where round tumor 

structures were found to be divided into groups of non-neoplastic stromal cells and 

extracellular matrix. So they elucidated the firm correlation between cell dispersal 

and the growth rate of the tumor, as well as the probability of metastasis.  

 

Figure 2 Short-range dispersal affects size, shape and growth rate of tumors, A spatial model predicts that 

dispersal and cell turnover limit intra-tumor heterogeneity, Waclaw, Bozic, Pittman et al., 2015 

Mathematically, they applied the “Eden lattice model” to simulate the combination of 

genetics, spatial expansion, and short-range cell dispersal. To simplify the simulation, 

they did not model metabolism, mechanics, spatial tissue heterogeneity, different cell 

types or angiogenesis. A tumor was modeled by a group of non-overlapping balls or 

microlesions of cells. Each evolving cell was associated with a certain position and a 

list of genetic alterations over time, whereby it was differentiated between passenger, 

driver and resistance-carrying mutations. Driver mutations were modeled to increase 

the growth rate by deregulating cellular divisions and give an advantage to increased 

proliferation and decreased apoptosis. In a cell division, each daughter cell is 

provided with n new genetic alterations of each type, with n being different in both 

cells and randomly calculated from the Poisson probability distribution. The vast 
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majority of their results was consistent with experimental findings, which emphasized 

the applicability and validity of mathematical models for biological processes  

(Waclaw, Bozic, Pittman, Hruban, Nowak, et al. 2015). 

Mertelsmann and Georg provided a distinct approach with the help of a virtual game 

called “Mitosis”. To address a wider audience, they modeled an interactive simulation 

to provide a tool to describe and actively model evolutionary processes, which can 

eventually lead to malignancy as well. For simplicity, they reduced the relevant cell 

mechanisms to ten fundamental intrinsic parameters called “Hallmarks of Evolution” 

and six external environmental parameters (Tab. 4).  

 

“Hallmarks of Evolution” Environmental Parameters 

Reproduction Oxygen (O2) 

Regeneration pH 

Energy Store Temperature 

Absorption Nutrition 

Agility Mutation Rate 

Interaction Cytokines 

Attack  

Defense  

Lifetime  

Receptor Sensitivity  

Table 1 “Hallmarks of Evolution” and Environmental Parameters, Cancer: Modeling evolution and natural 
selection, the „Mitosis Game“, Mertelsmann & Georg, 2016 

The whole simulation is based on evolutionary algorithms. The controller can adjust 

different tools, both altering the intrinsic and the environmental conditions, to grow a 

cell population and observe cell progression (Fig. 10). 
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Figure 3 Surface of the Mitosis Game, Cancer: Modeling evolution and natural selection, the “Mitosis Game“, 
Mertelsmann & Georg, 2016 

The novelty as compared to previous models is the fact that the genome of a cell 

cannot be changed directly, but can only be influenced by alterations in the 

parameters, which have an impact on the probability of cell survival. This way, the 

simulation follows the rules of random mutation and natural selection (Mertelsmann & 

Georg 2016).  

 

5.1.2 Towards Simulating Carcinogenesis 

5.1.2.1 Approaches – Primary Models 

The first versions of our simulation of carcinogenesis are primarily based on the 

model of the aforementioned “Mitosis-Game” by Mertelsmann and Georg 

(Mertelsmann & Georg 2016). The main aim is to ease control and handling of the 

former rather complex and undetermined game, which was previously supposed to 

address both gamers and scientists while maintaining the capability of interaction to 

appeal to a more scientific target audience. The new simulations are meant to serve 

as an educational tool as well as an approach to allow a broad range of scientists to 

explore the applicability of computational models in oncology, concerning both basic 

research and clinical trials. Therefore, the focus of the recent models lies in the 
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improvement of comprehensibility and clarity by reduction of complexity and increase 

of transparency of the simulated processes. 

 

5.1.2.2  Simulating Cancer Treatment Response 

The first approach consists of a simulation of tumor growth, treatment response, and 

resistance. On the surface of the simulation, there is a petri dish containing 

continuously growing cells, representing a malignant cell population. Cell 

characteristics and behavior can be influenced by ten different targeted therapies. 

Their application can be controlled by adjusting the related “+” and “-” buttons placed 

around the petri dish, with “+” increasing the allocated therapeutic dosage and “-” 

decreasing the assigned therapeutic dosage. Each targeted therapy is accompanied 

by a description of the attacked cellular pathway, the so-called “Hallmark”, frequently 

altered in a malignant cell (Fig. 11) (Hanahan & Weinberg 2000; Hanahan & 

Weinberg 2011). In the beginning, the dosage of each drug is set at an average 

concentration to represent a steady state of malignant growth with all pathways 

partially mutated in equal parts. 

 

Figure 4 Surface of the Simulation of Cancer Therapy, Georg, Groten, Mertelsmann et al.,  2016 
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The concrete therapies considered in this simulation are listed in Table 5: 

Targeted Therapy Cellular Pathway 

Cyclin-Dependent Kinase Inhibitor Evading Growth Suppressors 

Immune-Activating anti_CTLA4 mAB Avoiding Immune Destruction 

Telomerase Inhibitor Enabling Replicative Immortality 

Selective Anti-Inflammatory 

Derivative 

Tumor-Promoting Inflammation 

HGF/c-Met Inhibitor Activating Invasion and Metastasis 

VEGF Inhibitor Inducing Angiogenesis 

PARP Inhibitor Genome Instability and Mutation 

Pro-Apoptotic BH3 Mimetic Resisting Cell Death 

Aerobic Glycolysis Inhibitor Reprogramming Cellular Energetics 

EGFR Inhibitor Stimulating Proliferative Signaling  

Table 2 Targeted Therapies and related Cellular Pathways, Georg, Groten, Mertelsmann et al., 2016, Hanahan & 
Weinberg, 2011 

For further evidence about each registered Cellular Pathway, see paragraph “The 

Hallmarks of Cancer” (Hanahan & Weinberg 2000; Hanahan & Weinberg 2011).  

Moreover, randomly acquired resistance to distinct therapeutic drugs can be 

activated via an “Evolution”-Button above the petri dish, choosing between the states 

“on” and “off”. This way, cellular behavior and treatment response can be observed in 

the case of randomly acquired resistance. 

 

5.1.2.2.1 Logical Background and Programming  

The whole simulation is written in JavaScript and executable in every common web 

browser. Easel.js is applied as an additional library.  

At the beginning of the simulation, there is one single cell, which subsequently 

divides into two, one new daughter cell and one renewed parent cell. Each evolving 

cell in the simulation exhibits six different characteristics: Color, Position, Velocity, 

Direction Vector, Hayflick-Limit and a Boolean State (YES/NO-State) of Immune 

Attack. For each newly built cell, these characteristics are tested and calculated in a 

chronological order depending on the concentration of therapeutic drugs, which will 

be further elucidated below. First, the features themselves, their biological relevance 

and their calculation will be explained. 
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Color 

Each viable cell is colored green.  

Further color coding is used for the state “Imminent Apoptosis” (light blue) and the 

state of “Immune Attack” (dark gray/red contour), which will be depicted below. 

 

Position 

The simulation interface is defined via a two-dimensional coordinate system. The fist 

cell always starts at the center of the visible part of the coordinate system. The Cell 

Position of each evolving cell is calculated taking into account the former position of 

the parent cell. The new daughter cell will be placed at a spot around the parent cell, 

at a random angle in the distance of the diameter of a cell between the centers of the 

cells. In the current simulation, this happens without considering the availability of 

space. As a result, cells frequently pile up on top of one another, whereby the 

younger cell is placed on top of the former cells.  

 

Velocity 

The speed of a cell is defined as pixel per tick. It ranges from 0.1 to 1 and depends 

on the value of the HGF/c-Met Inhibitor which decreases the capacity to invade and 

metastasize. At the starting point, the speed of a cell is 0.5 pixel/tick. After each tick, 

the speed of a cell decreases exponentially, till it runs towards zero.  

 

Direction Vector 

The Direction Vector is a vector two, which determines the direction of cell 

movement. It is allocated randomly to every evolving cell and remains unchanged for 

the whole lifetime of the cell. 

 

Hayflick-Limit 

The Hayflick-Limit defines the number of possible divisions of a cell. It depends on 

the length of the chromosomal telomeres, which decreases in a standard cell with 

every cell division. To fasten and ease the processes observed in the simulation the 

default Hayflick-Limit is determined much smaller than in reality. In the simulation, the 

default Hayflick-Limit of a normal stem cell is 5 in contrast to the realistic number of 

72, 50 to 70 respectively (Shay & Wright 2000). If a cell shows a Hayflick-Limit of 1 or 
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less at the time of testing, it is marked with the color light blue and will die in the next 

tick in accordance to apoptosis. 

 

Immune Attack  

Another state, a cell can show, is the state of being recognized and attacked by the 

immune system. This state is a Boolean state. Proposing that once a cell has been 

detected as a target cell, it will be eliminated by the immune system, a cell in this 

irreversible state is coded with the color dark gray with a red contour and will be dead 

after ten ticks. The probability of Immune Attack depends on two targeted therapies. 

First, the concentration of “Immune-activating anti_CTLA4 mAB” determines the 

interval and thereby the likelihood of testing. The test interval ranges between 90 and 

ten ticks. Second, the concentration of “PARP inhibitors” further alters the probability 

of testing with a range of 1 to 10 %, presuming that the probability of detection by the 

immune system rises with the likelihood of mutation. 

 

 

The Targeted Therapies  

Each therapeutic drug is provided a particular mode of operation, defined by intervals 

and probabilities, strictly proportionally to the size of the related “drug-button”.  

The specific ways of operation are listed in Table 6: 

 

Targeted Therapy 

 

Mode of Operation Values 

(you may assume that the 

values between highest and 

lowest dosage are roughly 

interpolated) 

Cyclin-Dependent 

Kinase 

Inhibitor 

Calculated  probability (p) 

of proliferation 

Lowest dosage: p=1  

Highest dosage: p=0,25 

Immune-Activating 

anti_CTLA4 mAB 

Calculates interval 

duration within which the 

probability of attack and 

death by the immune 

system is calculated 

Lowest dosage: duration 

= 90 ticks 

Highest dosage: 

duration= 10 ticks 
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Telomerase Inhibitor Manipulates Hayflick limit 

(the simulations default 

value is 5 instead of 50-

70, due to limited 

processing power of 

current version)  

 

Lowest dosage: limit = 15 

divisions  

Highest dosage: limit = 1 

division  

 

Selective Anti-

Inflammatory Derivative 

Slightly decreases 

probability of proliferation  

Lowest dosage: reduction 

= 0,04  

Highest dosage: reduction 

= 0,06 

HGF/c-Met Inhibitor Determines Cell Speed 

(v) 

Lowest dosage: v = 1 

pixel/tick  

Highest dosage: v = 0,1 

pixel/tick  

VEGF Inhibitor Not in use  

PARP Inhibitor Calculates probability of 

attack and death by 

immune system  

Lowest dosage: p = 0,01 

Highest dosage: p = 0,1  

 

Pro-Apoptotic BH3 

Mimetic 

Not in use  

Aerobic Glycolysis 

Inhibitor 

Not in use  

EGFR Inhibitor Calculates duration of the 

interval in which 

probability of proliferation 

is calculated  

 

Lowest dosage: duration 

= 10 ticks  

Highest dosage: duration 

= 90 ticks  

Table 3 Algorithms of Targeted Therapies, Georg, 2016 

 

5.1.2.2.2 The Simulation Process  

Every simulation round has a defined starting point, both temporal and local. The 

time unit of the simulation is the “tick”, which defines one update loop. 50 ticks in the 

simulation equal one day in real time. The duration of one “tick” thereby depends on 
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the power of the processor, which should usually result in about 50 ticks per second. 

One update loop consists of chronologically determined assessment and subsequent 

consequences. These conditional links underlie distinct test mechanisms, algorithms, 

mainly if-then-instructions, and probability ranges. 

So, at the beginning of the simulation, when the program starts, a first cell evolves 

containing the characteristics mentioned above, calculated by the initial settings.  

In each following tick, the below-mentioned assessment process is performed. 

1) If the “Evolution”- Button is set “on”, a countdown, starting at “50”, is 

decremented at each tick. If it becomes “0”, a random drug is set at the lowest 

dosage or probability, symbolizing randomly acquired resistance to one of the 

targeted therapies. 

During the period a drug button is muted, the user cannot adjust it manually. 

At the end of the time of 50 ticks, the mute is removed, and another random 

drug is set to the lowest dosage or probability.  

2) Each cell is tested individually concerning divisibility.  

First, only cells not evolved in this tick can go through cell division.  

Second, the event of a division depends on the current EGFR-Inhibitor related 

Interval. Only if the predetermined Interval is expired, so that the value is “0”. 

The probability that a division actually occurs is further determined by the 

dosage of the Cyclin-Dependent-Kinase-Inhibitor, which is presumed to have 

an impact on growth control. The probability ranges between 0.5 and 1. So the 

higher the Inhibitor-dosage, the less probable is a cell division. If the Inhibitor-

dosage is set at the lowest, cell division is always successful. A fourth 

parameter which influences the probability of cell division is the Selective-Anti-

Inflammatory Derivative.  

The higher the Inhibitor dosage, the less probable is the occurrence of 

inflammation, the less probable is a cell division. The underlying hypothesis 

postulates that tumor-promoting inflammation supports tumor growth by 

increasing the cell division rate (Coussens & Werb 2002). 

Also, cells can only divide, if the maximum of living cells does not exceed 

1800 at the time of testing. 

This maximum is chosen to both simulate limited space and resources, as well 

as keep the simulation clear and manageable since the power of a 

conventional computer is limited. 
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3) If new cells evolve by the division of mother cells, they receive the 

characteristics described above. Thereby, Speed is only attributed to the 

newly arisen cells, whereas the rest of the qualities is given to all apparent 

cells at the time of testing. 

4) The probability of the cell to be attacked by the immune system is calculated. 

It depends on the Interval determined by the Immune-Activating anti_CTLA4 

mAB and the probability alteration according to the concentration of the PARP 

Inhibitor. For the exact probability calculation see paragraph “Immune Attack”. 

5) The Hayflick-Limit of the cell is tested. If it is 1, the cell is turned light blue and 

will be eliminated at the next division. 

6) In the last step, the probability of cell death is calculated. A cell dies, if it either 

placed outside of the petri dish, if its Hayflick-Limit counts less than 1, or if the 

ticks determined via “Immune Attack” reach 0 ticks. 

 

In the background of the simulation, a list of all living cells is created simultaneously. 

In this list, each cell is considered a particular variable or object, which has a given 

position, determined by its consecutive appearance, and is saved with its individual 

characteristics.  

 

5.1.2.3 Simulating Carcinogenesis based on the “Hallmarks of Cancer” 

Since the main aim of a simulation of carcinogenesis and cancer treatment was both 

visualization and interactivity, the first approach depicted above was still far too 

complex and opaque for visual validation. As a consequence, the treatment option 

was eliminated, and instead, cancer growth was simulated taking into account the 

impact of the different “Hallmarks” of cancer (Hanahan & Weinberg 2000; Hanahan & 

Weinberg 2011). These “Hallmarks” define the phenotypic characteristics found to be 

shared by the vast majority of malignant tumors, each resulting from an altered 

cellular pathway. This way, the user can influence cell behavior and tumor progress 

instantly by adjusting so-called “Hallmark”-Buttons (instead of “Targeted Therapy”-

Buttons) via “+” and “-”, analogously to the handling of the first model focusing on 

therapeutic interventions. “+” stands for a greater probability of alteration of the 

related pathway, whereas “-” decreases the likelihood of change.  

The interface, as well as the central logical mechanisms of the new simulation, are 

the same as in the first one, described in detail above (Fig. 12).  
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Figure 5 Surface of the Simulation of Carcinogenesis I, Georg, Groten, Mertelsmann et al., 2016, Hanahan & 
Weinberg 2011 

Due to higher transparency and closer resemblance to wet-lab experiments, the 

previously developed pseudo-3D-surface of the simulation was altered to a 2D-

visualization, which allows the visibility of every single cell and its behavior (Fig. 13). 

 

 

Figure 6 Surface of the Simulation of Carcinogenesis II, Georg, Groten, Mertelsmann et al., 2016 
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The full simulation model is provided via http://mertelsmann.psiori.com/. In this 

current version, spectral colors are programmed but do not show high contrast. 

The process of cell rise and division stays the same. Each evolving cell is equipped 

with the six characteristics as mentioned above. But, instead of the “Drug”-Buttons 

applied in the first simulation, “Hallmark”-Buttons influence these features and the 

resulting cell behavior and tumor growth. For further detail, see Table 7. 

 

“Hallmarks of Cancer” (Hanahan & 

Weinberg 2000; Hanahan & Weinberg 

2011) 

Evading Growth Suppressors 

Avoiding Immune Destruction 

Enabling Replicative Immortality 

Tumor-Promoting Inflammation 

Activating Invasion and Metastasis 

Inducing Angiogenesis 

Genome Instability and Mutation 

Resisting Cell Death 

Reprogramming Cellular Energetics 

Stimulating Proliferative Signaling  

Table 4 “Hallmarks of Cancer”, Hanahan & Weinberg 2000, 
Hanahan & Weinberg 2011) 

 
The former called “Evolution”-Button, is renamed “Mutation”-Button to achieve a 

more accurate depiction of the adjusted process, but works in the same way. 

Moreover, an additional “Entropy”-Button, which can be switched “on” and “off”, 

allows the simulation of the development of a progressively malignant tumor with 

increasing amount of mutated pathways over time. Maximally three pathways can be 

mutated at once. If a fourth pathway is mutated, the earlier one is ignored. In the last 

version (Figure 12) this feature was abandoned because it limited the modes of 

action concerning probability and chance in carcinogenesis. 

 

5.1.2.3.1 Logical Background and Programming 
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The whole simulation is written in JavaScript and executable in every common web 

browser. Easel.js is applied as an additional library for visualization purposes. 

At the beginning of the simulation, there is an arbitrary number of start cells, 

adjustable in code (currently set at 6 to prevent the system from early death because 

of the death of the first and only cell), which subsequently divides into two, one new 

daughter cell and one renewed parent cell. Each evolving cell in the simulation is 

equipped with six different characteristics: Color, Position, Velocity, Direction Vector, 

Hayflick-Limit and a Boolean-State of Immune Attack. For each newly built cell, these 

components are tested and calculated in a certain chronological order depending on 

the intensity of alteration of the cellular pathways. Below, the particular 

characteristics are described and the differences compared to the first simulation are 

elucidated. 

 

Color  

Each pathway is represented by a spectral color value, which is calculated as the 

weighted sum of the color values (RGB, vector 3 with values from 0 to 255) of all 

pathways, depending on their percentage of mutation (a state between 1 and 5). This 

calculated value builds the primary color of a cell. This calculation is inspired by a 

work of Weber et al. (Weber et al. 2011). 

Further color coding is used for the state “Imminent Apoptosis” (light blue) and the 

state of “Immune Attack” (dark gray/red contour). 

 

Position 

The simulation interface is defined via a two-dimensional coordinate system. The fist 

cells are placed at approximately equal distances from the center point of the visible 

part of the coordinate system. The Cell Position of each evolving cell is calculated 

taking into account the former position of the parent cell. The new daughter cell will 

be placed at a spot around the parent cell, at a random angle in the distance of the 

diameter of a cell.  

 

Velocity 

The speed of a cell is defined as pixel per tick. It ranges from 0.1 to 1 and depends 

on the value of “Activating Invasion and Metastasis”, which increases the capacity to 

invade and metastasize. At the starting point, the speed of a cell is 0.5 pixel/tick. 
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After one tick, the speed of a cell decreases exponentially over time, till it runs 

towards zero.  

 

Direction Vector 

The Direction Vector is a two-coordinate vector, which determines the direction of cell 

movement. It is allocated randomly to every evolving cell and remains unchanged for 

the whole lifetime of a cell. 

 

Hayflick-Limit 

The Hayflick-Limit defines the number of possible divisions of a cell. It depends on 

the length of the chromosomal telomeres, which decreases in a standard cell with 

every cell division. In the simulation, the default Hayflick-Limit of a normal stem cell is 

72 as an approximation of the realistic number between 50 and 70 (Shay & Wright 

2000). Each cell evolving from cell division is assigned the Hayflick-Limit of its 

predecessor cell minus 1. If a cell shows a Hayflick-Limit of 1 or less at the time of 

testing, it is marked with the color light blue and will die at a Hayflick-Limit of 0 or 

less, in accordance to apoptosis. 

 

Immune Attack  

Another state, a cell can show, is the state of being recognized and attacked by the 

immune system. This state is a Boolean-state. Proposing that once a cell has been 

detected as a target cell, it will be eliminated by the immune system, a cell in this 

constant state is coded with the color dark gray with a red contour and will be dead 

after 40 ticks. The probability of Immune Attack depends on two “Hallmarks” 

(Hanahan & Weinberg 2000; Hanahan & Weinberg 2011). First, the intensity of 

“Avoiding Immune Destruction” determines the interval and thereby the probability of 

testing. The test interval ranges between 90 and ten ticks. Second, the intensity of 

“Genome Instability and Mutation” further alters the likelihood of testing with a range 

of 1 to 10 %, presuming that the probability of detection by the immune system rises 

with the number of mutation. 
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The “Hallmarks of Cancer” (Hanahan & Weinberg 2000; Hanahan & Weinberg 2011) 

“Hallmarks of Cancer”  

 

Mode of Operation Values 

(you may assume that the 

values between highest and 

lowest dosage are roughly 

interpolated) 

Evading Growth 

Suppressors 

Calculated  probability (p) 

of proliferation 

Lowest dosage: p=0,25  

Highest dosage: p=1 

Avoiding Immune 

Destruction 

Calculates interval 

duration within which the 

probability of attack and 

death by the immune 

system is calculated 

Lowest dosage: duration 

= 10 ticks 

Highest dosage: 

duration= 90 ticks 

Enabling Replicative 

Immortality 

Manipulates decrease of 

the Hayflick-Limit per cell 

division (the simulations 

default value is 72) 

 

Lowest dosage: decrease 

= 0  

Highest dosage: decrease 

= 1,5  

 

Tumor-Promoting Slightly decreases Lowest dosage: reduction 
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Inflammation probability of proliferation  = 0,06  

Highest dosage: reduction 

= 0,04 

Activating Invasion and 

Metastasis 

Determines Cell Speed 

(v) 

Lowest dosage: v = 0,1 

pixel/tick  

Highest dosage: v = 1 

pixel/tick  

Inducing Angiogenesis Calculates probability of 

death resistance* 

Lowest dosage=0 

Highest dosage=1 

Genome Instability and 

Mutation 

Calculates probability of 

attack and death by 

immune system  

Lowest dosage: p = 0,1 

Highest dosage: p = 0,01  

 

Resisting Cell Death Calculates probability of 

death resistance* 

Lowest dosage=0 

Highest dosage=1 

Reprogramming Cellular 

Energetics 

Calculates probability of 

death resistance* 

Lowest dosage=0 

Highest dosage=1 

Stimulating Proliferative 

Signaling 

Calculates duration of the 

interval in which 

probability of proliferation 

is calculated  

 

Lowest dosage: duration 

= 90 ticks  

Highest dosage: duration 

= 10 ticks  

Table 5 Algorithms of the “Hallmarks of Cancer”, Georg, 2016, Hanahan & Weinberg, 2011. *mean value of all 
three values is calculated. 

An overview over the modes of action and the related interactions is given by the 

table in Figure 14: 
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Figure 7 Overview over the modes of action and interactions of pathways and cell characteristics, Georg, 2016 

 

5.1.2.3.2 The Simulation Process  

The Simulation Process is only slightly altered as well, compared to the first model. 

Every simulation round has a defined starting point, both temporal and local. The 

time unit of the simulation is the “tick”, which defines one update loop. 50 ticks in the 

simulation equal one day in real time. The duration of one “tick” thereby depends on 

the power of the processor, which should usually result in a number of about 50 ticks 

per second. One update loop consists of chronologically determined assessment and 

subsequent consequences. These conditional links underlie distinct test 

mechanisms, algorithms, mainly if-then-instructions, and probability ranges.  

So, at the beginning of the simulation, when the program starts, a first cell evolves 

containing the characteristics mentioned above, calculated by the initial settings.  

In each following tick, the below-mentioned assessment process is performed. 

1) The current size of the pathway buttons is measured, and their proportion of 

the entirety of pathway buttons is evaluated. As a result, the core color of the 

evolving cell (or cells) is calculated by the proportional summation of the 

distinct color values (Weber et al. 2011). 

2) If the “Mutation”- Button is set “on”, a countdown, starting at “50”, is 

decremented at each tick. If it becomes “0”, a random pathway is set at the 
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highest dosage or probability, symbolizing randomly acquired mutations of one 

of the cellular pathways.  

During the period a pathway button is set to the maximum, the user cannot 

adjust it manually. 

At the end of the time of 50 ticks, the automatically set adjustment is removed, 

and another random pathway is fixed at the highest dosage or probability.  

In case that the “Entropy”-Button is switched on, pathways, which have 

once been altered during the current round of the simulation, which have been 

saved in a background list, are considered permanently altered. Maximally 

three pathways can be mutated at once. If a fourth pathway is mutated, the 

earlier one is ignored. This way, the entirety of occurred alteration is 

accumulated over time. 

In the latest version of the simulation, this option was abandoned due to the 

insufficient validity of the mode of action. It shall be reintroduced at a later 

point in time with an adequate algorithm. 

3) Each cell is tested individually concerning divisibility.  

First, only cells not evolved in this tick can go through cell division.  

Second, the event of a division depends on the Interval determined by the 

current state of the pathway “Stimulating Proliferative Signaling”. Only if the 

predetermined Interval is expired, so that the value is “0”. The probability that 

a division occurs, is further determined by the dosage of the ability of a cell to 

evade “Growth Suppressors”, which is presumed to have an impact on growth 

control. The probability ranges between 0.5 and 1. So the higher the 

Probability of Evasion from Growth Suppressors, the more probable is a cell 

division. A fourth parameter which influences the probability of cell division is 

the “Tumor-Promoting Inflammation”.  

The higher the Probability of Inflammation, the more probable is a cell division. 

The underlying hypothesis postulates that tumor-promoting inflammation 

supports tumor growth by increasing the cell division rate (Hanahan & 

Weinberg 2011). 

If new cells evolve by the division of mother cells, they are equipped with the 

characteristics described above. Thereby, qualities are given to all new cells at 

the time of testing according to the currently set parameters, except for the 

Hayflick-Limit and the Position, which is predefined by the mother cell. 
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4) In the new 2D simulation, an improvement technique is applied to avoid cell 

stacking and only to permit cell placement where there is free space available. 

This technique consists of a collision process, in which it is tested at each tick 

if the distance between the centers of two cells has a minimal value of 1.2 x r 

with r = radius of a cell. This way every cell is compared to every other cell 

existing in the current process (listed in the table of all cells). If two cells do not 

fulfill this criterion, the compared cell dies, so that the new cell survives.  

This way, cells cannot pile up anymore, only a small percentage of overlap is 

permitted. So, by a selective mechanism, in areas with more available space, 

i.e. at the edge of the tumor, more cells can grow. 

5) The probability of the cell to be attacked by the immune system is calculated. 

It depends on the Interval determined by the ability to avoid Immune 

Destruction and the probability alteration according to the likelihood of 

“Genome Instability and Mutation”. For the exact probability calculation see 

paragraph “Immune Attack”. 

6) The Hayflick-Limit of the cell is tested. If it is 1, the cell is turned light blue and 

will die after the next division. 

7) In the last step, the probability of cell death is calculated. A cell is eliminated, if 

it either placed outside of the petri dish, if its Hayflick-Limit counts less than 1, 

or if the ticks determined via “Immune Attack” reach 0 ticks. 

In the background of the simulation, a list of all living cells is created simultaneously. 

In this list, each cell is considered a particular object, which has a given position, 

determined by its consecutive appearance, and is saved with its specific 

characteristics. As a novel feature to improve transparency for a more scientific use, 

a “lab report bar” is added to the surface of the simulation, which shows the current 

numbers of total cells, current cells, dead cells and the growth rate.  

 

5.1.2.3.3 The Validation Process 

To implement the suggested simulation in oncology, a validation of the depicted 

processes is inevitable. The Validation Process was approached in two phases. 

 

1) Balancing 

The first step proceeded during the development of the simulation via a tool called 

“Balancing” (Schell 2015). “Balancing” describes a strategy frequently applied in 
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Game Design and represents a process of iterative observation, testing and 

comparison to literal evidence and subsequent adjustment of the settings of the 

simulation, until the resulting processes and developments visually approach the 

processes and mechanisms depicted in pertinent literature. This strategy is 

preferably pursued by several people from different perspectives (Schell 2015). In 

our case, the literal primary basis was the review above by Hanahan and Weinberg 

(Hanahan & Weinberg 2011), which was complemented by the present literature 

review on carcinogenesis. The iterative “Balancing” was performed by a team of 

experts in the fields of Game Design, Information Theory, Cognitive Science, and 

Medicine/Oncology.  

 

2) Regression Analysis 

The second phase contained a statistical analysis of individual correlations by 

computational regression analyses. More precisely, the function for Ridge 

Regression was applied (Suthaharan 2016; Pedregosa et. al. 2011).  

Since the evolutionary sections of the simulation turned out to be insufficient for this 

type of analysis, they were eliminated here.  

For the analysis, both the pathways and certain cell characteristics were 

parameterized, so that their correlations could be investigated.  

After running a pre-loop, every possible combination of one, two and three pathways 

was simulated for 6000 ticks, which equals 120 days in real time. For better statistical 

power, they were repeated six times each. Thereby, the standard deviations as 

fractions of the means were 1.23% for the results of “currentCellMax”, 4.08% for 

“allCells”, 5.61% and “ImmuneAttacked”. Detailed standard deviation values are 

provided in Table 13 in the Appendix. Every simulation round started with six stem 

cells. All pathways were set to an average level, the pathways to be altered were set 

to the maximum level. During the simulation, the parameterized cell characteristics 

were measured at pre-defined points in time. Using this approach, 175 possibilities 

plus one standard constellation were tested, six times each so that 1050 experiments 

were performed. All tests taken together correspond to 365 years in real time. 

The results were analyzed utilizing the equation of Ridge Regression (Pedregosa et. 

al. 2011). Out of the immense amount of generated data, we focused on the results 

concerning the following aspects, considering these to be the most robust 

parameters to validate the correctness of the simulation of tumor growth and 
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proliferation: the maximum number of current cells, the maximum number of all cells 

over time, and the maximum number of cells killed by the immune system. All of 

these showed both valid results as well as unexpected correlations and outcomes. 

The term “unexpected” here means not directly determined by the code. 

For manageability purposes, abbreviations were introduced for the pathways 

described above. Table 9 gives an overview over these abbreviations. 

 

Abbreviation Pathway 

signaling Sustaining Proliferative Signaling 

energetics Reprogramming Cellular Energetics 

deathresistance Resisting Cell Death 

instability Genome Instability and Mutation 

angiogenesis Inducing Angiogenesis 

metastasis Activating Invasion and Metastasis 

inflammation Tumor-Promoting Inflammation 

immortality Enabling Replicative Immortality 

immune Avoiding Immune Destruction 

growth Evading Growth Suppressors 

Table 6 Abbreviations of Cellular Pathways, Georg & Lau, 2016 

 

First, we investigated the results of all performed experiments sorted by the 

maximum number of simultaneously existing cells at any point of the simulation 

round (currentCellsMax). The results can be seen in Figure 15. 
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Figure 8 Experimental runs sorted by currentCellsMax, Georg & Lau, 2016 

 

The maximum number of current cells for each possible combination, and each 

repeat is plotted on the x-axis. Thereby, every bar represents a single experiment, 

whereas the color indicates the activation status with white standing for an average 

activation level and gray standing for a maximum of activation, for each pathway. 

These pathways are plotted on the y-axis. This way, the entirety of all run 

experiments is sorted by the maximum number of current cells, ranging from 600 

cells on the left to 1703 cells on the right side. One has to mention that the x-axis is 

non-linear here, as one unit equals one experiment. 

From this diagram, one can already recognize, that the two pathways associated the 

most with a high amount of cells, are “signaling”, standing for “Sustaining Proliferative 

Signaling”, and “growth”, representing “Evading Growth Suppressors”.  

This rather visual evaluation can be further interpreted mathematically via linear 

regression. The results can be extracted from Figure 16. 
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Figure 9 Coefficients in Linear Regression of currentCellsMax, Georg & Lau, 2016 

 

The results from linear regression present the predictive coefficients for the maximum 

amount of current cells for each pathway. In other words, it displays the correlation 

between the activation, or the expression respectively, of each pathway and the 

number of current cells at the end of the simulation. So, a positive coefficient 

indicates that the activation of the related pathway increases the probability of a high 

number of cells in a population. 

While we do not claim correct quantities, the qualitative outcome appears to be in 

concordance with expected results based on current clinical and wet-lab literature. 

According to the correlation coefficients above, “Sustaining Proliferative Signaling” 

and “Evading Growth Suppressors” show by far the most significant positive 

correlation. This finding corresponds to the assertion of Hanahan and Weinberg, who 

consider “Sustaining Proliferative Signaling” to be “arguably the most fundamental 

trait of cancer cells” (Hanahan & Weinberg 2011). The capacity of “Evading Growth 

Suppressors”, on the other hand, is closely linked to mutations in tumor suppressor 

genes. The fact that mutations in genes like TP53 and APC are highly prevalent in 

human cancers has been shown in many studies and indicates the importance of the 
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cancerous trait to evade growth suppression by alterations of the responsible genes 

(Vogelstein et al. 2013; Vogelstein & Kinzler 2015b). 

A rather surprising and unexpected result is the large negative coefficient associated 

with the characteristic of “metastasis” standing for “Invasion and Metastasis”. At first 

sight, it appears counterintuitive that the ability to invade and disseminate, which is 

notoriously affiliated with high-grade malignancy and aggressive growth, has an 

adverse effect on the maximum number of current cancer cells and related tumor 

size. However, since the number of cells in our simulation corresponds to the number 

of cells in the primary lesion, with the total number of cancer cells in the whole 

organism ignored, this result appreciates in value.  

Even though, metastasis might be widely associated with aggressive tumor growth, it 

seems plausible at the same time, that a high amount of disseminating cells, which 

leave the primary lesion and do not continue to proliferate in the latter, cause either a 

steady state of tumor growth or even a lack of proliferating cells and thereby a 

decrease in tumor cell number in the primary site. This hypothesis could, for 

example, explain the rare, but recognized, case of Cancer of Unknown Primary 

(CUP). A CUP is defined as metastatic cancer, without any visible primary lesion. 

Sometimes, only minute rests of such a primary lesion can be identified. This process 

might become clearer against the background of the phenomenon depicted above. It 

might be possible, that at some stages in tumor progression, dissemination and 

metastasis present a disadvantage to the primary lesion concerning cell proliferation 

of the latter. This assertion can be emphasized by the considerations of Vogelstein, 

mentioned in the paragraph “4.3.2 Cancer is an evolutionary disease”. According to 

him, dissemination and metastasis can occur at any time in the development of 

cancer, even in premalignant phases, and it is not yet understood, if additional 

genetic mutations are required for the potential of metastasis (Vogelstein et al. 2013). 

The rest of the regression results do not show significantly positive or negative 

coefficients, which indicates that their particular impact on the cell population size 

can be neglected. Nevertheless, in certain combinations, these coefficients can show 

secondary importance. The importance of the interrelationship of other parameters 

can be extracted from an additional analysis of the data above, split into four ranges 

of currentCellsMax, oriented to the distribution of the number of experiments, which 

resulted in the different cell amounts (Fig. 17).  
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Figure 10 Splitting the data into four ranges, currentCellsMax, Geoerg & Lau, 2016 

 

In the data depicted above, one can distinguish four ranges: 800 cells, 800-1200 

cells, 1200 to 1500 cells and 1500 cells. 

Via classification of the coefficients resulting from regression analysis in the different 

fields one can notice the impact of the three most significant pathways, both with 

positive and negative effect on cell population size.  

 

 

Figure 11 Coefficients for classifying the range, responsible for range in [-inf, 800.00), Georg & Lau, 2016 
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Figure 12 Coefficients for classifying the range, responsible for range in [800.00, 1200.00), Georg & Lau, 2016 

 

 

Figure 13 Coefficients for classifying the range, responsible for range in [1200.00, 1500.00), Georg & Lau, 2016 

 

 

 

Figure 14 Coefficients for classifying the range, responsible for range in [1500.00, inf), Georg & Lau, 2016 

 

While “signaling” and “growth” decrease the probability of small population size ( 

800 cells), metastasis is found to have a positive impact on a small population size 

(Fig. 18). This distribution changes with increasing population sizes. To achieve 

population sizes from 800 to 1200 cells, all three pathways have to be switched off, 

as their coefficients are highly negative (Fig. 19). While the impact on the population 

size stays negative in bigger cell counts (1200 cells) for “metastasis”, the influence 
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of “signaling” and “growth” is highly positive in these population sizes, which 

underlines the findings elucidated above (Fig. 20). 

Linear regression of the fourth range, 1500 cells, shows additional results 

concerning the importance of co-pathways in between the group of high cell counts 

(Fig. 21). 

As Figure 22 indicates, in between the group of high cell counts, “inflammation” and 

“immortality” have a positive effect on increased population sizes. This means, that in 

addition to the factors “signaling” and “growth”, extracted from the main analysis, 

“inflammation” and “immortality” raise the probability of high cell counts in the range 

of 1500 cells. 

 

Figure 15 Coefficients in Linear Regression of currentCellsMax for values in [1500.00, inf), Georg & Lau, 2016 

 

As a consequence, the question of intermediate steps and the formation process of 

the results elucidated above, need to be addressed. 

Even though the current analysis does not provide direct evidence of the course of 

the simulation, data can be extracted indirectly by evaluating the maximum number 

of total cells (“allCells”) in each experiment and the number of cells killed by the 

immune system (“immuneAttacked”). 
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Figure 16 Experimental runs sorted by allCells, Georg & Lau, 2016 

 

In Figure 23, all experimental runs are ordered due to the maximum number of all 

cells, which have ever evolved during one experiment.  

Thereby, the x-axis is non-linear, since one unit equals one experiment. Still, it shows 

the number of cells ranging from 31165 cells to 684063 cells. 

Comparing these figures to the results of the maximum number of current cells, it 

becomes apparent, that the number of ever existing cells in one experiment is about 

600-fold higher than the number of cells existing at once. These findings indicate, 

that proportionally to the number of evolving cells, independently from the actual 

number, cells die at the same time, or leave the primary tumor and metastasize, 

respectively. 
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Figure 17 Coefficients in Linear Regression of allCells, Georg & Lau, 2016 

 

Linear Regression of the experimental runs concerning “allCells” shows results 

similar to the results in “currentCellsMax”. However, what is remarkable here, is the 

fact that apart from “signaling” and “growth”, which are also highly positively 

correlated to a high number of current cells, “inflammation” and “immortality” show 

positive correlations, which corresponds to the findings after range division (Fig. 24). 

 

One possible way of a cell to die is to be attacked by the immune system. 

The number of cells, which are attacked by the immune system in each experiment is 

represented by the value “immuneAttacked”. 
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Figure 18 Experimental runs sorted by immuneAttacked, Georg & Lau, 2016 

Figure 25 above shows all experimental runs sorted by the number of cells, which 

have been attacked by the immune system. The x-axis is non-linear here because 

one unit equals one experiment. Nevertheless, the x-axis shows the number of cells 

attacked by the immune system ranging from 0 cells to 8979 cells. 

 

Figure 19 Coefficients in Linear Regression of immuneAttacked, Georg & Lau, 2016 
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Linear Regression of the results concerning the number of cells attacked by the 

immune system indicates, that both “instability”, standing for Genome Instability and 

Mutation, and “immortality”, standing for “Enabling Replicative Immortality, have a 

positive impact on a cell’s probability to be attacked by the immune system, while 

“signaling”, “metastasis” and “immune”, meaning Avoiding Immune Destruction, are 

negatively correlated. In light of the fact that both “Genome Instability and Mutation” 

and “Enabling Replicative Immortality”, despite short telomeres, cause chromosomes 

with high amounts of genetic failure and defects, it seems plausible, that these 

features increase the probability of the altered cell to be detected as foreign and 

eliminated in the subsequent (Fig. 26). 

The protective effect of “Avoiding Immune Destruction” is evident. Moreover, the 

negative correlation with metastasis can be explained by the fact that cells leaving 

the dish are counted as dead and thereby cannot be attacked by the immune system 

anymore, even though they could be targeted in a real organism. The adverse effects 

of Sustaining Proliferative Signaling, on the other hand, remain unclear. One possible 

explanation might be a net effect because compared to the rising number of 

proliferating cells, the immune system kills relatively few cells. However, this 

phenomenon needs to be further examined. 

 

5.1.3 Towards Simulating Hematopoiesis and Acute Myeloid Leukemia 

The previously underestimated amount of undetermined and unexpected events 

occurring in the first two simulations led us to proceed to a hematopoiesis model. In 

hematopoiesis, normal tissue homeostasis could be modeled more easily and cells 

leaving the primary site (the bone marrow) were expected to produce realistic and 

applicable experiments and results. These results could be validated against known 

clinical parameters: peripheral blood counts, hematopoietic growth factor effects, and 

bone marrow cellularity under normal conditions and after leukemic transformation.  

To increase validity and transparency, we decided to focus on three specific cell 

types, erythrocytes, granulocytes and thrombocytes, and their multipotent or lineage-

restricted progenitor cells. We chose myelopoiesis and the related pathologic 

alterations because they belong to the best known and investigated processes of cell 

evolution and diseases resulting from dysregulation of these processes, such as 

aplastic anemia or acute myeloid leukemia (Doulatov et al. 2012). The great 



 

 47  

evidence of these processes is used to program a simulation as close as possible to 

real biological and clinical processes, by the application of data extracted from 

published experiments and studies. 

 

5.1.3.1 Establishing Physiological Hematopoiesis after Transplantation: Tissue 

Homeostasis 

5.1.3.1.1 Biological Background 

Blood cells consist of two different cell lineages, lymphoid and myeloid. While the 

lymphoid lineage contains T-, B- and NK-cells, acting both in the adaptive and the 

innate immune system, the myeloid cell branch produces granulocytes, like 

neutrophils, eosinophils, mast cells and basophils, monocytes, erythrocytes and 

megakaryocytes (Doulatov et al. 2012). As fully differentiated blood cells are mainly 

short-lived and undergo continuous turnover, establishment and maintenance of the 

blood system has to be provided by hematopoietic stem cells (HSCs). In adult 

mammals, small numbers of HSCs normally stay in the bone marrow and are 

responsible for replenishing multi-lineage progenitor and precursor cells to maintain 

the number of circulating blood cells (Orkin & Zon 2008). The exact number of HSCs 

actively participating in hematopoiesis at a given time point is not known, but it is 

estimated to be around 400 cells. It has been shown that about 116 stem cells are 

involved in the maintenance of hematopoiesis after bone marrow transplantation 

(Peixoto et al. 2011). Normally, stem cells divide slowly and are capable of self-

renewal. Among HSCs “active” stem cells can be distinguished from “reserve 

compartment” cells.  While “active” cells divide and contribute to hematopoiesis, the 

“reserve” cells remain dormant and inactive. Previous studies have shown that the 

stem cell division is asymmetrical, with each division resulting in one daughter cell, 

which stays in the HSC niche with the capability of self-renewal, and one daughter 

cell, which enters the pathway to differentiation (Peixoto et al. 2011). 

The process of differentiation of hematopoietic cells is described as a hierarchical 

tree system (Fig. 27). First, HSCs give rise to multipotent progenitor cells of the two 

main lineages, myeloid (CMP) and lymphoid (MLP/CLP). These cells then divide into 

precursor cells devoted to one single or multiple determined pathways to then fully 

differentiated mature cells (Manesso et al. 2013). In the myeloid branch, CMPs 

produce GMPs, which result in granulocytes or monocytes, and MEPs, which give 
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rise to erythroid and megakaryocyte cells. In the lymphoid lineage, CLPs produce B-

cell precursor cells and earliest thymic progenitors (ETPs), which are destined to 

develop into T- and NK-cells (Doulatov et al. 2012). 

 

 

Figure 20 Hierarchical tree system of hematopoiesis, Hematopoiesis: A Human Perspective, Doulatov et al., 2012 

The whole path of differentiation is assumed to be a unidirectional lineage 

specification process resulting from a series of irreversible decisions towards 

increasingly differentiated states with on the other hand decreasing potential for self-

renewal and multipotentiality (Manesso et al. 2013). 

The molecular mechanisms regulating this differentiation hierarchy are not yet 

completely understood. Many findings indicate that it is based on a plethora of direct 

and indirect interactions between cytokines, growth factors, transcription factors and 

feedback mechanisms as well as epigenetic mechanisms. The microenvironment of 

the HSC, the HSC niche is assumed to play a pivotal role in the specification process 

(Orkin & Zon 2008). To provide an overview, some of the most important 

transcription factors involved in hematopoietic differentiation are depicted in Figure 

28. 
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Figure 21 Critical transcription factors for blood development, Hematopoiesis: An Evolving Paradigm for Stem Cell 
Biology, Orkin & Zon, 2008 

 

5.1.3.1.2 Logical Background and Programming 

The first prototypes of the simulation were programmed in pure Python because of its 

ability to easily change and adapt the code. While the first complete and interactive 

version was written in Java, an improved simulation in Python, embeddable into a 

web-service with Bokeh, was written to combine interactivity and the possibility of fast 

repetitive simulations with different settings.  

As mentioned above, in this model myelopoiesis in the bone marrow is simulated as 

the establishment of hematopoietic tissue after transplantation, as well as its impact 

on the peripheral blood composition. Each cell in the bone marrow is simulated 

individually with a lot of biological aspects, such as differentiation characteristics or 

the potential to undergo different genomic mutations or even apoptosis. 

According to data extracted from the literature, the following cell types and their 

progenitor cells are considered (Fig. 29):  
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1) Dormant Stem Cells (cp_1) 

a. Capable of self-renewal 

b. Low division rate (enabled to divide every five ticks, depending on 

need)  

2) Long Time Active Stem Cells (cp_2) 

a. Capable of self-renewal 

3) Short Time Active Stem Cells (cp_3) 

a. Division in two higher differentiated daughter cells  

4) Multipotent Progenitor Cells (cp_4) 

5) Common Myeloid Progenitor Cells (cp_5) 

6) Progenitor Cells (5) 

a. Myoblasts (gran_1 – gran_5) 

b. Megakaryocytes (throm_1 – throm_5) 

c. Erythrocyte Progenitor Cells (ery_1 – ery_5) 

7) Differentiated Cell Types 

a. Granulocytes (32 for each gran_1 progenitor cell) 

b. Thrombocytes (300 for each throm_1 progenitor cell)  

c. Erythrocytes (32 for each ery_1 progenitor cell)  

For transparency purposes, the differentiation process of each cell line has been 

reduced to five steps. The number of cell divisions is determined with the aid of an 

estimation, as data about the exact biological division rates are controversial. 

 

Figure 22 Cell types considered in the Simulation of Hematopoiesis, Georg, 2016 
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5.1.3.1.3 The Simulation Process 

At the beginning of the simulation, one dormant stem cell divides and the division 

cascade of myelopoiesis proceeds depending on the apparent concentration of 

transmitters. The term “transmitter” is used here as the integral of stimulating and 

inhibitory molecules and mechanisms. The most important stimulators of the three 

pathways of myeloid blood cell production studied here are the three most influencing 

growth factors, erythropoietin, G-CSF and thrombopoietin. 

In the current model, these transmitters are virtual countable values, which are 

determined by experimental trial to reach a steady state of normal hematopoiesis. 

Transmitters are eliminated for each cell, which leaves the bone marrow and enters 

the peripheral blood as a fully differentiated blood cell, whereby one transmitter is 

eliminated for one cell. One new transmitter is generated in the bone marrow for 

each cell, which dies in the peripheral blood.  

In the simulation, the time unit is determined as “tick”, with 1 tick = 1 update loop. In 

our simulation 1 tick is defined as 1/10 day so that 10 ticks = 1 day.  

In each tick, the following assessment proceededs chronologically. 

1) In the first step, it is tested, which cells of the peripheral blood die and how 

many new transmitters are generated as a result. 

2) All transmitters available in the bone marrow bind to progenitor cells, which lie 

on the pathway to the final cell of this transmitter, whereby the probability of 

binding increases with the grade of differentiation. More precisely, the binding 

likelihood depends on the binding capacity (= space) of a cell, with a 

probability distribution inverse to the transmitters required for cell division. The 

higher the level of differentiation, the less binding space, and the higher the 

binding probability. The process of transmitter binding can take more than one 

tick. Depending on the number of bound transmitters, cell division is initiated. 

Thereby, the number of transmitters needed to induce cell division equals the 

number of possible fully differentiated cells evolving from the current 

progenitor cell. As a result, a more differentiated cell requires fewer 

transmitters to divide, than a less differentiated cell. All cells at the same level 

of differentiation are considered equal in the simulation. They are not depicted 

as single variables but as a group of individual items. In other words, cells at 

the same level of differentiation bind transmitters randomly, and, as a result, 

divide randomly. Nevertheless, in one tick, single cells can be divided, as well 
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as several cells from the same level, as well as several cells from distinct 

differentiation levels. 

If the amount of a single transmitter type does not reach the threshold of a 

certain cell for a division, all currently attached transmitters are summarized. 

The apparent dividable cell is then tested with the sum of all transmitters. If the 

sum is high enough to induce cell division, the differentiation type of the 

evolving cells depends on the ratio of transmitters. The transmitter with the 

largest percentage determines the resulting cell type. 

3) For each fully differentiated cell, which is transferred to the peripheral blood, a 

transmitter of this type is eliminated. If a cell division does not result in a fully 

differentiated cell, the transmitters attached to this cell are released into the 

bone marrow and can bind to another cell.  

4) Every cell, which does not divide, generally keeps the transmitters attached 

independent from the update loop. Only with a probability of 5% per tick, it can 

lose all attached transmitters at once.  

 

Storage of cell information 

Every item evolving in the simulation, as well as every event, is saved in tables and 

objects. For the particular storage tables, see below. The tables of all progenitor cells 

and the number of transmitters in the bone marrow change simultaneously so that 

only the current state can be examined.  

A statistics module attached to the simulation collects all relevant information for 

analysis after a complete run. 

 

Progenitor Cells in the Bone Marrow 

All progenitor cells existent in the bone marrow are registered as object references in 

an array.  

Each cell contains its own information about cell type, length of telomeres, telomere 

loss at cell division (normally 1), number of attached transmitters, amount of free 

transmitter space, next differentiation step (with number and type of required 

transmitters), Boolean state of dependence on transmitters and a Boolean state of 

being a cancer cell. 
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Transmitters in the Bone Marrow 

Transmitters are registered in two dictionaries (Tab. 9). First, the entirety of all 

transmitters (attached and free) and second, the number of free transmitters.  

 

Number of Transmitters per Cell Type  

Trans_ery x 

trans_gran y 

Trans_throm z 

Table 7 Exemplary dictionary of the number of transmitters per cell type, Worm, 2016 

 

Peripheral Blood Cells 

The number of cells in the peripheral blood is described via the storage of their 

determined point of death in a dictionary. When a new cell evolves, the probable 

lifetime is calculated by the average extracted from literature data and the Gaussian 

Distribution. Depending on the result, a cell is defined as a time of death in ticks and 

is added to Table 10, representing the number of dying cells per tick. For the 

depiction of all current 

cells at tick x, the entirety of cells is summarized, from tick x to tick n. 

 

Table 8 Exemplary dictionary of determined points of death of peripheral blood cells, Worm, 2016 

 
Graphic Depiction  

Figure 30 shows the visible surface of the simulation. There are nine different figures. 

The figures in the first row represent the state and differentiation process of 

erythrocytes. The second row shows the behavior of the granulocytes and the third 

row the development of the thrombocytes. In the first column, the number of fully 

differentiated cells in the peripheral blood over time is depicted. In the second 

column, the corresponding number of total (red) and free (orange) transmitters in the 

bone marrow is shown over time. These graphs are built with the precision of 1 dot 

Cell/Tick 1 2 … n 

Erythrocytes 20 15 … x 

Granulocytes 45 30 … y 

Thrombocytes 30 55 … z 
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per tick. In the last column, a bar chart demonstrates the number of progenitor cells 

at the distinct differentiation levels at the current state, with higher ciphers standing 

for higher differentiation. The fourth row shows three additional charts. On the left 

side, there is a description of the number of needed time in milliseconds for each 

simulation step. In the middle, the total number of cells in the bone marrow is 

represented (red) compared to the number of cells able to divide (orange). On the 

right sight, a pie chart gives an overview of the relative distribution of different 

progenitor cells in the bone marrow. 

 

Figure 23 Surface of the Simulation of Hematopoiesis, Worm, 2016. The full simulation is provided via hem-
model.psiori.com/hema_simulation. 

5.1.3.2 Simulating Leukemogenesis: Acute Myeloid Leukemia 

5.1.3.2.1 Biological Background 

Acute Myeloid Leukemia (AML) can be described as the abnormal proliferation and 

poor differentiation of a clonal population of myeloid stem cells with typical 

characteristics, such as clonal expansion and infiltration of the bone marrow, blood 

and other tissues with subsequent hematopoietic impairment and bone marrow 

deficiencies (De Kouchkovsky & Abdul-Hay 2016; Dohner 2015; Papaemmanuil et al. 

2016). It is the most common acute leukemia in adults, forming approximately 80% of 
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cases in adult patients. The incidence rises with age, ranging from about 1.3 per 100 

000 population in patients at 65 years and younger to 12.2 per 100 000 population in 

patients older than 65 years (De Kouchkovsky & Abdul-Hay 2016). Even though 

acute myeloid malignancies can be ordered into favorable, intermediate and adverse-

risk groups, prognosis widely varies, and mortality is still high (De Kouchkovsky & 

Abdul-Hay 2016). AML is considered to be a biologically and clinically heterogeneous 

disease since it can evolve by a previous hematological disorder, after a prior therapy 

or, most frequently, as a de novo malignancy (De Kouchkovsky & Abdul-Hay 2016). 

It can be classified into AML with recurrent genetic abnormalities, AML with 

myelodysplasia-related changes, therapy-related AML and AML not otherwise 

specified, due to the World Health Organization (WHO) Classification of Tumors of 

Hematopoietic and Lymphoid Tissues (Dohner 2015). Recent efforts to define 

adequate classifications try to exploit the increasingly apparent molecular 

heterogeneity of AML. AML is assumed to develop over time, with an increasing 

number of somatically acquired driver mutations, resulting in multiple competing 

clones. Recent findings indicate, that a plethora of 5234 driver mutations in 76 genes, 

evolving in combinations of two or more in 86 % of tested patients, can be identified 

in association with AML (Papaemmanuil et al. 2016). An approach to cluster the most 

frequent genetic mutations was performed by Döhner in 2015. In Figure 31, eight 

different groups of mutations can be distinguished resulting in the following molecular 

pathways. 
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modification (center right) 

7. Deregulation of DNA 
methylation (upper right) 

8. Transcriptional Deregulation and 
Impaired Degradation (upper 
middle) 

 

Figure 31 Cluster of the most frequent mutations in AML, Acute Myeloid Leukemia, Döhner, 2015 
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rk concept depicted above, one can assign each molecular pathway to one of the 

three major hallmark pathways, Growth/Apoptosis Balance (1), Genetic 

Fidelity/Immortality (2-8) and Differentiation Block/Stem Cell Features (2) (Dohner 

2015).  

 

5.1.3.2.2 The Simulation Process 

To simulate the development of AML, we programmed a new cell type, a cancer cell, 

for each differentiation level. They contain an arbitrary combination of up to three 

different alterations, independence from the Hayflick-limit (telomere-shortening = 0), 

independence from transmitters (transmitter dependence = false) and a block of 

differentiation (as the next differentiation step the same cell type is determined). Also, 

for statistical reasons, the cancer state is turned ON.  

 

5.1.3.2.3 Exemplary Experiments – Possible Implications 

Similar to the validation process of the simulation of carcinogenesis, exemplary 

experiments have been simulated in this hematopoietic model. 

Aiming to investigate the impact of each of the three proposed pathways of AML, 

both as single parameters as well as in the combination of two or three, leukemia has 

been simulated in several experimental runs for 10 000 ticks each, which equals 100 

days in real time. The three different pathways have been activated in various 

sequences, at tick 2000, 5000 and 8000. Every setting has been repeated for five 

times. The visual part has been abandoned for these experiments to allow a faster 

simulation. In the beginning, 20 runs without any pathway activated have been 

documented as a control group. The following graphs are exemplary for all 

experimental runs, as the results were homogenous. For each set of experimental 

runs, four graphs have been plotted for the granulocyte concentration in the 

peripheral blood over time (Fig. 32), the thrombocyte concentration in the peripheral 

blood over time (Fig. 33), the erythrocyte concentration in the peripheral blood over 

time (Fig. 34) and the total number of cells in the bone marrow over time (Fig.35). 

Depicted in the graph are the healthy range in blue, the healthy average in orange 

and the mutated average in red.                                                                                   

In the first set of experiments, telomerase activation, which allows cell division 
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independent from the Hayflick-limit, is applied to one cp_5 progenitor cell at tick 

2000. The term cancer is used in the legends to indicate malignant alteration. 

 

Figure 24 Granulocyte concentration per l/10, Tick 2000: cp_5 cell with telomerase activation, Worm, 2016 

 

Figure 25 Thrombocyte concentration per l/10, Tick 2000: cp_5 cell with telomerase activation, Worm, 2016 
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Figure 26 Erythrocyte concentration per l/10, Tick 2000: cp_5 cell with telomerase activation, Worm, 2016 

 

Figure 27 Total marrow cells, Tick 2000: cp_5 cell with telomerase activation, Worm, 2016 
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Except for a slightly decreasing number of total marrow cells from tick 2000 onwards, 

there is no significant effect visible in the graphs above. 

In the second experimental run, a cp_5 cell with telomerase activation was added at 

tick 2000 and a cp_5 cell with both telomerase activation and a block of 

differentiation at tick 5000. 

 

Figure 28 Granulocyte concentration per l/10, Tick 2000: cp_5 cell with telomerase activation, Tick 5000: 
differentiation block, Worm, 2016 
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Figure 29 Thrombocyte concentration per l/10, Tick 2000: cp_5 cell with telomerase activation, Tick 5000: 
differentiation block, Worm, 2016 

 

 

Figure 30 Erythrocyte concentration per l/10, Tick 2000: cp_5 cell with telomerase activation, Tick 5000: 
differentiation block, Worm, 2016 
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Figure 31 Total marrow cells, Tick 2000: cp_5 cell with telomerase activation, Tick 5000: differentiation block, 
Worm, 2016 

Still, there is no obvious effect visible (Fig. 36 – 38), except for a lower cell count in the bone 

marrow from tick 2000 onwards (Fig.39). 

 

In the last set of experimental runs, a cp_5 cell with a telomerase activation was added at 

tick 2000, a cp_5 cell with both a telomerase activation and a block of differentiation at tick 

5000 and a cp_5 cell with a telomerase activation, a block of differentiation and transmitter 

independence at tick 8000. 
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Figure 32 Granulocyte concentration per l/10, Tick 2000: cp_5 cell with telomerase activation, Tick 5000: 
differentiation block, Tick 8000: transmitter-independent division, Worm, 2016 

 

 

Figure 33 Thrombocyte concentration per l/10, Tick 2000: cp_5 cell with telomerase activation, Tick 5000: 
differentiation block, Tick 8000: transmitter-independent division, Worm, 2016 
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Figure 34 Erythrocyte concentration per l/10, Tick 2000: cp_5 cell with telomerase activation, Tick 5000: 
differentiation block, Tick 8000: transmitter-independent division, Worm, 2016 

 

Figure 35 Total marrow cells, Tick 2000: cp_5 cell with telomerase activation, Tick 5000: differentiation block, Tick 
8000: transmitter-independent division, Worm, 2016 
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In contrast to the first two sets of experimental runs, here a significant effect can be found 

shortly after tick 8000. While the concentrations of granulocytes, thrombocytes and 

erythrocytes decrease dramatically (Fig. 40 – 42), the total number of cells in the bone 

marrow increases significantly (Fig. 43). These findings correspond to the clinical course of 

AML and its effects on the bone marrow. While other tested orders showed similar results, 

one combination provided unexpected effects. In the set of experimental runs with a cp_5 

cell with transmitter independent cell division at tick 2000 and an additional block of 

differentiation at tick 5000, the following effects were observed.  

 

 

Figure 36 Granulocyte concentration per l/10, Tick 2000: cp_5 cell with transmitter-independent division, Tick 
5000: differentiation block, Worm, 2016 
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Figure 37 Thrombocyte concentration per l/10, Tick 2000: cp_5 cell with transmitter-independent division, Tick 
5000: differentiation block, Worm, 2016 

 

 

Figure 38 Erythrocyte concentration per l/10, Tick 2000: cp_5 cell with transmitter-independent division, Tick 
5000: differentiation block, Worm, 2016 
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Figure 39 Total marrow cells, Tick 2000: cp_5 cell with transmitter-independent division, Tick 5000: differentiation 
block, Worm, 2016 

While a low effect was seen after tick 2000, after the addition of a differentiation block at tick 

5000, concentrations of granulocytes, thrombocytes and erythrocytes decreased extensively 

(Fig. 44 – 46), while the total number of bone marrow cells increased (Fig. 47). However, in 

contrast to the findings from the sets with the introduction of three alterations, all values 

seem to recover at tick 7000 to worsen again at tick 8000 (Fig. 44 – 47). While the exact 

mode of action remains unknown here, the effect of the addition of the differentiation block is 

remarkable. Still, the system shows an oscillating behavior instead of the picture of a full-

blown AML, like in the sets with three different alterations. 

In conclusion, our experiments indicate, that, except for the surprising outcome elucidated 

above, there are always three alterations necessary to initiate a highly malignant AML. 

However, the block of differentiation seems to play the most crucial role, as it already shows 

an effect, when added to transmitter independence. 

 

5.2 The Hallmark Concept Revisited 

The simulation models and the performed experiments depicted above to a large 

extent confirm the Hallmark concept extracted and synthesized from the literature 

review. Furthermore, our findings indicate that a reduction similar to the classification 
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presented by Vogelstein et al. can be reasonable, supplemented by an additional 

category for differentiation block and acquisition of stem cell features.  

 

Hanahan & 

Weinberg 2011 

Vogelstein et al. 2013 Groten et al. 2016 Torrente et al. 

2016 

  Exp 1 Exp 2 Exp 3 Exp 4  

Hallmarks of 

Cancer 

Core Cellular 

Processes 

CurrentCell

sMax 

(Primary 

Tumor) 

AllCells ImmuneA

ttacked 

Leuke

mia 

Genes 

overexpressed 

in cancer 

Evading Growth 

Suppressors 

Cell survival 1 1   EMR2  

Sustaining 

Proliferative 

Signaling 

 2 2 - 2 I PTP4A3 (**)  

      RPS6KB1  

      RGS1  

Tumor-Promoting 

Inflammation 

 3 4 4  TREM2  

      MAP3K12  

Evading Immune 

Destruction 

 4a    TDO2  

      ANXA11 

Enabling 

Replicative 

Immortality 

Genome 

maintenance 

4b 3 2 II ? 

Genome Instability 

and Mutation 

   1  DDX11  

      BLM 

      NUDT1  

      NUDT1  

Activating Invasion 

and Metastasis 

Cell Fate - 1 - 1 - 1  PTP4A3 (**)  

      MMP9  

New: Stem Cell 

properties, Block 

of Differentiation, 

MET 

    III LEF1  
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Resisting Cell 

Death 

 low effect  none 

Inducing 

Angiogenesis 

  

Reprogramming 

Energy Metabolism 

  

Table 9 The Hallmark Concept Revisited, 1-4b: Relevance Range after Simulating Carcinogenesis, I-III: Final 
Relevance Range after Simulating Hematopoiesis (Synthesis), Hanahan & Weinberg, 2011, Vogelstein et al., 
2013, Groten et al., 2016, Torrente et al., 2016 

In Table 11 the hallmarks from Table 3 are compared to the results of the simulated 

experiments. The “Hallmarks of Cancer” have been ranged from 1 to 4 (4a and 4b, 

respectively) due to their calculated impact on the three different end points, 

“CurrentCellsMax”, “AllCells” and “ImmuneAttacked”, explained in detail in the 

paragraph “Simulating Carcinogenesis – The Validation Process”. A fourth column 

represents the three hallmarks applied in the simulation of hematopoiesis to develop 

a state of AML (see paragraph “Simulating Leukemogenesis”).  

All three experiments in the simulation of carcinogenesis indicate that the two most 

crucial traits for cell growth are “Sustaining Proliferative Signaling” and “Evading 

Growth Suppressors”, followed by secondary alterations regarding “Tumor-Promoting 

Inflammation” and “Enabling Replicative Immortality”.  

More generally speaking, these are the alterations in cellular processes of “Cell 

Survival” and “Genome Maintenance”, which dominate cell growth in the simulation 

of carcinogenesis. These two major hallmarks were transferred to the simulation of 

hematopoiesis. A hallmark presumably missing in the first simulation, as well as the 

common concepts of cancer traits, is the lack of differentiation and closely associated 

stem cell features of a cancer cell. We did not investigate the separate introduction of 

a differentiation blockade in the simulation model of carcinogenesis since aspects of 

differentiation were not included there. The model as presented essentially assumes 

a block of differentiation by exclusion. This gap becomes evident in the simulation of 

cancer in a specific tissue system, here the hematopoietic tissue. Applying the lack of 

differentiation to the simulation as a third cellular alteration, one can simulate 

leukemogenesis with largely realistic and plausible results. This result corresponds to 

the suggestions of Vogelstein et al. (Vogelstein et al. 2013; Vogelstein & Kinzler 

2015a) and the distribution of genes found to overexpressed in different cancer types 

(Torrente et al. 2016). 
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6 Discussion 

Cancer is still the second-leading cause of death worldwide. Recently, novel 

concepts and rethinking of previously published concepts are changing the oncologic 

research landscape (Lowy & Collins 2016). To address the rising need for innovative 

research approaches (Lowy & Collins 2016) the overall aim of this project was to 

investigate the essential phenotypic “hallmarks” of a cancer cell, oriented to the 

“hallmarks of cancer” suggested by Hanahan and Weinberg (Hanahan & Weinberg 

2000; Hanahan & Weinberg 2011), and extended by findings of pertinent literature 

about cancer history, cancer hallmarks, genetic hallmarks, cancer therapy, biological 

and somatic evolution, entropy and chance and recent research objectives. Based on 

this literature research we developed an in silico simulation model through a hallmark 

synthesis and, vice versa revisited the identified characteristics via the modeled 

simulation. Aiming for a novel tool for teaching as well as for basic, clinical and 

therapeutic research, we thereby focused on visualization and interactivity of the 

simulation. Implementing this feature utilizing a simulation model, which bears the 

advantage of time as an important measurable parameter, we provide a model, 

which extends the investigative breadth of previous analytical models. Certainly, 

other simulation models have been developed in cancer research, for example, to 

simulate targeted therapies (Komarova & Wodarz 2016) or to investigate the 

correlation between spatial cancer cell expansion and tumor morphology (Waclaw, 

Bozic, Pittman, Hruban, Vogelstein, et al. 2015). In comparison to our model, the 

simulation models of targeted therapy provide small amounts of variable parameters, 

which are independent of each other and therefore need extensive mathematical 

descriptions and rules. Complex probability calculations have to be performed to 

achieve the desired simulation. Even though these simulations might appear more 

complex and elaborated, they do not allow the investigation of a high amount of 

parameters, nor end points. Especially, the possibility to investigate interactions of 

parameters is restricted. In contrast, in our model the true values of parameters result 

from the simulated dynamic processes and interactions, which are possible because 

of the simulation of single pathways by algorithms iteratively adapted during the 

simulation process. Additionally, both models mentioned above do not provide the 

possibility to interact simultaneously and adjust the simulation via a user-friendly 
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surface, which is enabled by both of our simulations, which contain interactive 

buttons which can be directly adjusted. 

Qualitative validity, regarding the resemblance of outcomes to evidence-based 

findings, could be shown by extensive Balancing and Regression Analysis with the 

aid of a review of pertinent literature. This way, both simulations have shown 

considerable coherence and plausibility. Certainly, one could argue, that the 

simulation results could mainly be explained as a self-fulfilling prophecy. However, 

first, this effect is a sign for inner coherence of a system, in which only single 

parameters were defined at the beginning and autonomous interactions are still 

possible, and second, we could still observe undetermined and unexpected 

outcomes, like the negative impact of “metastasis” on the maximum number of 

current cells in the primary tumor in the simulation of carcinogenesis. 

Even though the obvious results already provide a certain qualitative validity, an 

additional validation process called system identification is still inevitable to declare 

the simulations valid. Therefore, further experiments have to be simulated with higher 

numbers of repetition and be compared to new wet-lab experiments. Furthermore, 

aiming to apply Machine Learning tools to the simulation, one would also have to 

reintegrate an improved probability system with continuous parameters and Gauss 

distributions. 

As mentioned above, the simulation of carcinogenesis resulted in both confirmations 

of obvious evidence as well as so far underappreciated effects. Although the full 

validity of the simulation can be doubted for the reasons mentioned above, we would 

like to take these results seriously, since the majority can be explained even though 

they seem counterintuitive at first sight. Our findings indicate that the ten “Hallmarks” 

proposed by Hanahan and Weinberg can be clustered in two different groups, 

“Growth/Apoptosis Balance” and “Genetic Fidelity/Immortality”, and that 

carcinogenesis requires just one alteration in each pathway group. Modelling 

Hematopoiesis finally revealed one missing Hallmark Capability, “Block of 

Differentiation”, which we have not specifically addressed in the carcinogenesis 

model, which starts at time 0 already with a cancer cell population. After having 

reviewed the literature on cancer evolution, we propose to assign this feature to the 

broader term “Stem Cell Features”. These findings largely correlate with earlier 

suggestions by Vogelstein et al.  (Vogelstein et al. 2013; Vogelstein & Kinzler 2015b). 

In their earlier work, they assumed cancer cells to contain alterations in the three 
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core cellular processes “Cell Survival”, “Cell Fate” and “Genomic Maintenance”. Out 

of these three processes, two directly correlate to our suggestions (Tab. 11). Their 

third proposal, “Cell Fate”, primarily describes the capability of metastasis, which we 

would like to extend to “Stem Cell Features”, including the “Block of Differentiation”. 

For, this assertion results from our simulations and is, according to recent findings, a 

fundamental trait of cancer cells, which is a prerequisite for several other pathways 

(Jordan, Craig T. et al. 2006; Gupta et al. 2009). The fact that our simulation of 

hematopoiesis depends on three different pathway alterations to result in an overt 

AML corresponds to recent suggestions of Vogelstein et al., that three driver 

mutations are sufficient to initiate the majority of malignancies (Vogelstein & Kinzler 

2015b).  

In conclusion, we believe to have developed two simulation models, which both 

confirm previous assertions as well as provide novel unexpected and possibly 

underestimated findings, including a new hallmark classification proposal, and should 

be increasingly considered in prospective cancer research. 

In combination with Machine Learning tools, autonomous self-learning systems, our 

simulations promise to contribute to a novel type of evidence and hypothesis 

generation in cancer research with full exploitation of computational power. The 

possibly enormous impact of such an approach on the current oncologic research 

landscape clearly merits an intensive evaluation of tools of artificial intelligence to 

better understand the process of carcinogenesis. Given such a powerful tool to 

investigate multi-parametric processes in time-lapse experiments, one might no 

longer be able to justify a reductionist approach, which might not be sufficient when it 

comes to individual human beings. Once having developed valid tools to evaluate big 

data, one should take a step back to clinical trials and redefine the necessary amount 

of data, which has to be collected to investigate these processes with the maximum 

efficiency. The same applies to the widely spread assertion that EBM is the best way 

to address huge amounts of data. In contrast, PM might be the better way here 

(Sugarman 2012b), enabled by encompassing simulation models to clinical 

challenges. Furthermore, in light of our final synthesis of hallmark capabilities, as well 

the ability to investigate processes and alterations at any arbitrary point in time and 

therefore observe a sequence of events via a simulation, one can also doubt the 

common end points in current cancer research. These endpoints, usually, mainly 

focus on remission induction and treatment-free survival. However, in light of recent 
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findings like the “evolutionary double-bind” (Willyard 2016), it might be more 

reasonable to define new end points with respect to possibilities like living with 

cancer, i.e. overall survival irrespective of remission rates.  
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7 Summary 

The overall aim of this project was to investigate the fundamental phenotypic traits of 

a cancer cell to develop an “in silico” simulation model and, vice versa redefine the 

identified characteristics via the established simulation model. Thus, the focus lay on 

visualization and interactivity of the simulation. To achieve this aim, we addressed 

the following objectives. 

First, the essential “Hallmarks of Cancer” have been identified, based on a literature 

review (Groten et al., 2016). 

As a result, the identified hallmark characteristics were evaluated and, finally, 

synthesized. Based on this synthesis, mathematical algorithms were developed to 

describe the hallmark pathways of carcinogenesis. Subsequently, a computational 

simulation of carcinogenesis has been drawn up employing these mathematical 

algorithms. In the next step, the proposed algorithms and correlations have been 

tested, validated and adapted through the simulation in several repetitive phases. To 

achieve a more reliable and valid simulation, we transferred the novel insights won 

from the first simulation to the simulation of processes in specific cell populations 

arising in hematopoiesis. This model was used to simulate normal hematopoietic 

tissue homeostasis, two clinical scenarios, the establishment of hematopoiesis after 

stem cell transplantation, as well as leukemogenesis. As a result, both simulation 

models were proved to be qualitatively valid regarding the resemblance of outcomes 

to evidence-based findings documented by pertinent literature. Also, both simulation 

models presented unexpected, but plausible outcomes, which were not directly 

defined by mathematical algorithms, and provide new insight into the probable 

process of carcinogenesis. Our findings indicate that the ten “Hallmarks” proposed by 

Hanahan and Weinberg can be assigned to two different groups, “Growth/Apoptosis 

Balance” and “Genetic Fidelity/Immortality”, and that carcinogenesis requires just one 

alteration in each pathway group. Modelling Hematopoiesis finally revealed one 

missing Hallmark Capability, “Block of Differentiation”, which we propose to assign to 

the broader term “Stem Cell Features”. These findings largely correlate with earlier 

suggestions by Vogelstein et al. (Vogelstein et al. 2013; Vogelstein & Kinzler 2015b). 

Beyond that, our classification proposal offers a novel and eventually more accurate 

perspective of carcinogenesis.  
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In conclusion, we believe to have developed two simulation models, which both 

depict previous assertions as well as provide novel unexpected, hypo generating and 

possibly underestimated insights and should be increasingly incorporated into 

prospective oncologic research. Certainly, further validation steps will have to be 

performed, among other things for quantitative predictability. However, in sight of the 

correctness of the basic concept, it promises to contribute to a novel type of evidence 

and hypothesis generation in cancer research objectives, especially in future 

conjunction with Machine Learning tools, which allow time-lapse experiments, 

independent self-learning of a system and, thus, full exploitation of computational 

power. 
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12 Appendix 

 

12.1 Full Simulation Codes 

 
Full Code Carcinogenesis 

(Maximilian Georg & Boris Lau, PSIORI GmbH) 

 

Simulation Commented 

(Maximilian Georg & Boris Lau, PSIORI GmbH) 

 

var args = process.argv; 

 

var num_expected_params = 11; 

 

 

function usage_exit() { 

    console.log("Usage: node mitosis_science_batch.js NUMSTEPS P1 P2 p3"); 

    console.log("                NUMSTEPS: number of steps the simulation is run"); 

    console.log("        cyclinScaleCount: [0,..,4]"); 

    console.log("     immuneActScaleCount: [0,..,4]"); 

    console.log("          teloScaleCount: [0,..,4]"); 

    console.log("     selectiveScaleCount: [0,..,4]"); 

    console.log("           hgfScaleCount: [0,..,4]"); 

    console.log("          vegfScaleCount: [0,..,4]"); 

    console.log("          parpScaleCount: [0,..,4]"); 

    console.log("  proapoptoticScaleCount: [0,..,4]"); 

    console.log("       aerobicScaleCount: [0,..,4]"); 

    console.log("          egfrScaleCount: [0,..,4]"); 

    process.exit() 

} 

 

if (args.length!= 2+num_expected_params) usage_exit(); 

 

//**** PARSE PARAMETERS **** 

var num_steps = parseInt(args[2+0]); 

if (isNaN(num_steps) || num_steps<0) usage_exit(); 

 

 

 

/* INIT */ 

 

// size is used to adjust the whole simulation to different screen sizes and represents a 

number of pixels (this version is without visualisation) 

var size = 1200; 

// petri dish size 

var resultCircleSize = 0.205 * size; 

 

// standard duration of reproduction interval in ticks (30 ticks represent 1 day) 

var reproCountdownStart = 30; 

// halflick limit for initial cells 

var hayflickStart = 72; 

// standard value for hayflick reduction after proliferation 

var hayflickReductionStart = 1; 

// standard value for cell Speed after proliferation (pixels per tick) 

var cellSpeedStart = 0.5; 

// standard probability for proliferation 

var growthChanceStart = 0.5; 

// standard probability for avoiding to get attacked by immune system 

var immuneAvoidStart = 0.95; 

// standard duration of immune attack intervals  

var immuneCountdownStart = 30; 

// standard time it take will an attacked cell dies 

var immuneResistanceStart = 40; 

// standard inflammation value (this is used to modify the probability of events which depent 

on inflammation) 

var inflammationStart = 1; 
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// standard values for angiogenese, avoiding aproptosis and reprogramming energetics, this 

values are used calculated the probability for avoiding cell death 

var angioStart = 0.5; 

var proapoptoticStart = 0.5; 

var aerobicStart = 0.5; 

// all tacked output values 

var allCells = 0; 

var deadCells = 0; 

var deadCellsTemp = 0; 

var newCellsTemp = 0; 

var currentCells = 0; 

var overlappingCells = 0; 

var hayflickReached = 0; 

var immuneAttacked = 0; 

var cellChange = 0; 

var ccCollect = 0; 

var ccCount = 0; 

var ccAverage = 0; 

var currentCellsMin = Number.POSITIVE_INFINITY; 

var currentCellsMax = -1; 

var newCellsMin = Number.POSITIVE_INFINITY; 

var newCellsMax = -1; 

var deadCellsMin = Number.POSITIVE_INFINITY; 

var deadCellsMax = -1; 

 

// the emitter stores all imfomation needed to cerate new cells 

var emitter = { 

    x: 0.5 * size, 

    y: 0.286 * size, 

    cellSize: 5, //2.8, 

    cellColor: "#daf650", 

    cellStrokeColor: "#daf650", 

    breakCap: 10, 

    cellSpeed: 0.2,//0.1, 

    reproCountdown: reproCountdownStart, 

    hayflick: hayflickStart, 

    hayflickReduction: hayflickReductionStart, 

    growthChance: growthChanceStart, 

    immuneAvoid: immuneAvoidStart, 

    immuneCountdown: immuneCountdownStart, 

    immuneResistance: immuneResistanceStart, 

    inflammation: inflammationStart, 

    angio: angioStart, 

    proapoptotic: proapoptoticStart, 

    aerobic: aerobicStart 

}; 

 

 

//**** CONFIGURE VALUES **** 

 

// stubs for unused and thus unimplemented buttons 

var evo = {state: 0, inhib: []}; 

var entro = {state: 0}; 

 

 

//all values according to dossages assigned in batch.js and standard values get calculated 

 

//Cyclin-dependent kinase inhibitors // Evading growth suppressors 

var cyclinScaleCount = parseInt(args[2+1]); 

if (isNaN(cyclinScaleCount) || cyclinScaleCount<0 || cyclinScaleCount>4) usage_exit(); 

if (entro.state && evo.inhib.indexOf(0)) emitter.growthChance = growthChanceStart * 2; 

else if (evo.state && evo.inhib[evo.inhib.length-1] == 0) emitter.growthChance = 

growthChanceStart * 2; 

else { 

    var factor = [2, 1.5, 1, 0.5, 0.2].reverse(); 

    emitter.growthChance = growthChanceStart * factor[cyclinScaleCount] 

} 

 

//Immune activating anti_CTLA4 mAb // Avoiding immune destruction 

var immuneActScaleCount = parseInt(args[2+2]); 

if (isNaN(immuneActScaleCount) || immuneActScaleCount<0 || immuneActScaleCount>4) 

usage_exit(); 

if (entro.state && evo.inhib.indexOf(1)) emitter.immuneCountdown = immuneCountdownStart * 3; 

else if (evo.state && evo.inhib[evo.inhib.length-1] == 1) emitter.immuneCountdown = 

immuneCountdownStart * 3; 

else { 

    var factor = [3, 1.5, 1, 1/1.5, 1/3.0].reverse(); 
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    emitter.immuneCountdown = immuneCountdownStart * factor[immuneActScaleCount]; 

} 

 

//Telomerase Inhibitors // Enabling replicative immortality 

var teloScaleCount = parseInt(args[2+3]); 

if (isNaN(teloScaleCount) || teloScaleCount<0 || teloScaleCount>4) usage_exit(); 

if (entro.state && evo.inhib.indexOf(2)) emitter.hayflickReduction = 0; 

else if (evo.state && evo.inhib[evo.inhib.length-1] == 2) emitter.hayflickReduction = 0; 

else { 

    var values = [0, 0.5, hayflickReductionStart, 1.25, 1.5].reverse(); 

    emitter.hayflickReduction = values[teloScaleCount]; 

} 

 

// Tumor - promoting inflammation 

var selectiveScaleCount = parseInt(args[2+4]); 

if (isNaN(selectiveScaleCount) || selectiveScaleCount<0 || selectiveScaleCount>4) 

usage_exit(); 

if (entro.state && evo.inhib.indexOf(3)) emitter.inflammation = inflammationStart - 0.2; 

else if (evo.state && evo.inhib[evo.inhib.length-1] == 3) emitter.inflammation = 

inflammationStart - 0.2; 

else { 

    var offset = [-0.2, -0.1, 0, 0.1, 0.2]; 

    emitter.inflammation = inflammationStart + offset[selectiveScaleCount]; 

} 

 

//Inhibitors of HGF/c-Met // Activating invasion & metastasis 

var hgfScaleCount = parseInt(args[2+5]); 

if (isNaN(hgfScaleCount) || hgfScaleCount<0 || hgfScaleCount>4) usage_exit(); 

if (entro.state && evo.inhib.indexOf(4)) emitter.cellSpeed = cellSpeedStart * 2; 

else if (evo.state && evo.inhib[evo.inhib.length-1] == 4) emitter.cellSpeed = cellSpeedStart * 

2; 

else { 

    var factor = [2, 1.5, 1, 0.5, 0.2].reverse(); 

    emitter.cellSpeed = cellSpeedStart * factor[hgfScaleCount]; 

} 

 

//Inhibitors of VEGF signaling // Inducing anglogenesis 

var vegfScaleCount = parseInt(args[2+6]); 

if (isNaN(vegfScaleCount) || vegfScaleCount<0 || vegfScaleCount>4) usage_exit(); 

var values = [1, 0.75, 0.5, 0.25, 0].reverse(); 

emitter.angio = values[vegfScaleCount]; 

 

//PARP inhibitors // Genome instability & mutation 

var parpScaleCount = parseInt(args[2+7]); 

if (isNaN(parpScaleCount) || parpScaleCount<0 || parpScaleCount>4) usage_exit(); 

if (entro.state && evo.inhib.indexOf(6)) emitter.immuneAvoid = immuneAvoidStart + 0.04; 

else if (evo.state && evo.inhib[evo.inhib.length-1] == 6) emitter.immuneAvoid = 

immuneAvoidStart + 0.04; 

else { 

    var offset = [0.04, 0.02, 0, -0.02, -0.05]; //.reverse(); 

    emitter.immuneAvoid = immuneAvoidStart + offset[parpScaleCount]; 

} 

 

//Proapoptotic BH3 mimetics // Resisting cell death 

var proapoptoticScaleCount = parseInt(args[2+8]); 

if (isNaN(proapoptoticScaleCount) || proapoptoticScaleCount<0 || proapoptoticScaleCount>4) 

usage_exit(); 

var values = [1, 0.75, 0.5, 0.25, 0].reverse(); 

emitter.proapoptotic = values[proapoptoticScaleCount]; 

 

//Aerobic glycolysis inhibitors // Reprogramming cellular energetics 

var aerobicScaleCount = parseInt(args[2+9]); 

if (isNaN(aerobicScaleCount) || aerobicScaleCount<0 || aerobicScaleCount>4) usage_exit(); 

var values = [1, 0.75, 0.5, 0.25, 0].reverse(); 

emitter.aerobic = values[aerobicScaleCount]; 

 

//EGFR inhibitors // Stimulating proliferative signaling 

var egfrScaleCount = parseInt(args[2+10]); 

if (isNaN(egfrScaleCount) || egfrScaleCount<0 || egfrScaleCount>4) usage_exit(); 

if (entro.state && evo.inhib.indexOf(9)) emitter.reproCountdown = reproCountdownStart / 3; 

else if (evo.state && evo.inhib[evo.inhib.length-1] == 9) emitter.reproCountdown = 

reproCountdownStart / 3; 

else { 

    var factor = [1/3.0, 1/1.5, 1.0, 1.5, 3].reverse(); 

    emitter.reproCountdown = reproCountdownStart * factor[egfrScaleCount]; 

} 
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function StageMock() { 

    this.cells = []; 

    this.getNumChildren = function () { 

        return this.cells.length; 

    }; 

    this.getChildAt = function(idx) { 

        return this.cells[idx]; 

    }; 

    this.addChild = function(cell) { 

        this.cells.push(cell); 

    } 

    this.removeChildAt = function(idx) { 

        this.cells.splice(idx, 1); 

    } 

} 

 

// function to create new cells (functions used for visualisation are inactive) 

function createCell(parent) { 

    var cell = {} //new createjs.Shape(); /*visualisation*/ 

    //cell.graphics.setStrokeStyle(emitter.cellSize * 

0.4).beginStroke(emitter.cellStrokeColor).beginFill(emitter.cellColor).drawCircle(0, 0, 

emitter.cellSize); /*visualisation*/ 

 

    // a new cell cannnot reproduce itselfe in the same tick it is created 

    cell.canReproduce = false; 

 

    // if the created cell is the initial cell it is placed in the middle of the petri dish 

    if (parent == motherID) { 

        cell.x = emitter.x; 

        cell.y = emitter.y; 

        cell.canReproduce = true; 

        cell.hayflick = emitter.hayflick; 

    } 

    // all other cells are placed next to its mother cell in a random angle 

    else { 

        motherCell = stage.getChildAt(parent); 

        cell.x = motherCell.x + Math.sin(Math.random() * 360) * emitter.cellSize * 2; 

        cell.y = motherCell.y + Math.cos(Math.random() * 360) * emitter.cellSize * 2; 

        cell.hayflick = motherCell.hayflick; 

    }; 

 

    // cell get values from emitter 

    cell.speedX = (Math.random() * (2 * emitter.cellSpeed)) - emitter.cellSpeed; 

    cell.speedY = (Math.random() * (2 * emitter.cellSpeed)) - emitter.cellSpeed; 

    cell.time = 0; 

    cell.reproIn = emitter.reproCountdown; 

    cell.hayflickReduction = emitter.hayflickReduction; 

    cell.growthChance = emitter.growthChance; 

    cell.immuneAvoid = emitter.immuneAvoid; 

    cell.immuneCountdown = emitter.immuneCountdown; 

    cell.parried = false; 

    cell.immuneResistance = emitter.immuneResistance; 

    cell.angio = emitter.angio; 

    cell.proapoptotic = emitter.proapoptotic; 

    cell.aerobic = emitter.aerobic; 

 

    // cell object is added to array of all objects and output value "allCells" is counted up 

by 1 

    stage.addChild(cell); 

    allCells ++; 

} 

 

// function to create a group of initial cells 

function createCells(count) { 

    for (var i = 0; i < count; i++) { 

        var cell = {}; 

        cell.canReproduce = false; 

        cell.x = emitter.x + Math.sin((360 / count) * i) * size * 0.05; 

        cell.y = emitter.y + Math.cos((360 / count) * i) * size * 0.05; 

        cell.hayflick = emitter.hayflick; 

        cell.speedX = (Math.random() * (2 * emitter.cellSpeed)) - emitter.cellSpeed; 

        cell.speedY = (Math.random() * (2 * emitter.cellSpeed)) - emitter.cellSpeed; 

        cell.time = 0; 

        cell.reproIn = emitter.reproCountdown; 

        cell.hayflickReduction = emitter.hayflickReduction; 

        cell.growthChance = emitter.growthChance; 
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        cell.immuneAvoid = emitter.immuneAvoid; 

        cell.immuneCountdown = emitter.immuneCountdown; 

        cell.parried = false; 

        cell.immuneResistance = emitter.immuneResistance; 

        cell.angio = emitter.angio; 

        cell.proapoptotic = emitter.proapoptotic; 

        cell.aerobic = emitter.aerobic; 

 

        stage.addChild(cell); 

        allCells ++; 

    } 

} 

 

// function to calculate distance between 2 objects 

function sqrLineDistance(point1, point2) { 

    var xs = 0; 

    var ys = 0; 

 

    xs = point2.x - point1.x; 

    xs = xs * xs; 

 

    ys = point2.y - point1.y; 

    ys = ys * ys; 

 

    return (xs + ys); 

} 

 

stage = new StageMock(); 

motherID = 0; 

//create initinial population of 10 cells; 

createCells(10); 

 

//**** RUN MAIN LOOP ***** 

for (var iteration=0; iteration<num_steps; iteration++) { 

 

    var elapsed = 50; 

 

    deadCellsTemp = 0; 

    newCellsTemp = 0; 

 

    // not in use 

    evo.countdown --; 

    if (evo.countdown <= 0) { 

        evo.countdown = 50; 

        evo.inhib.push (Math.floor(Math.random() * 10)); 

        if (evo.inhib.length > 3) { 

            evo.inhib.shift(); 

        } 

        //console.log(evo.inhib); 

        //console.log(evo.inhib[evo.inhib.length-1]); 

    } 

 

    // values for tolerated overlapping of cells are set 

    refDistOverlap = (emitter.cellSize * 1.2) * (emitter.cellSize * 1.2); 

    refDistCircle = (resultCircleSize - emitter.cellSize) * (resultCircleSize - 

emitter.cellSize) 

 

    // the following happens for each cell 

    for (var i=0; i < stage.getNumChildren(); i++) { 

        var cell = stage.getChildAt(i); 

        cell.growthChance = emitter.growthChance; 

 

        // check if cell may reproduce 

        if (cell.canReproduce == true && cell.reproIn <= 0) { 

            if (Math.random() <= (cell.growthChance + (0.05 * emitter.inflammation))/* && 

stage.getNumChildren() < 1800*/) { //3000) { 

 

                if (cell.hayflick>1 && cell.hayflick-cell.hayflickReduction<=1) { 

                    hayflickReached++; 

                } 

 

                cell.hayflick -= cell.hayflickReduction; 

 

 

                createCell(i); 

                newCellsTemp ++; 

            } 
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            cell.reproIn = emitter.reproCountdown; 

        } 

 

        deleted = false; 

        for (var j=i+1; j < stage.getNumChildren(); j++) { 

            var otherCell = stage.getChildAt(j); 

            if (sqrLineDistance (cell, otherCell) < refDistOverlap) { 

                stage.removeChildAt(i) 

                //console.log("overlapping"); 

                overlappingCells ++; 

                //deadCells ++; 

                deadCellsTemp ++; 

                i--; 

                deleted = true; 

                break; 

            } 

        } 

 

        if (!deleted) { 

 

            // check if cell is attacked by immune system 

            if (cell.immuneCountdown == 0 && Math.random() > cell.immuneAvoid) { 

                cell.parried = true; 

                immuneAttacked ++; 

            } 

 

            // if cell is attacked by immune system the attack duration is reduced by 1 

            if (cell.parried == true) { 

                //cell.graphics.clear().setStrokeStyle(emitter.cellSize * 

0.25).beginStroke(minusColor).beginFill(hgfColor).drawCircle(0, 0, emitter.cellSize); 

/*visualisation*/ 

                cell.immuneResistance --; 

            } 

            else if (cell.immuneCountdown < 0) { 

                cell.immuneCountdown = emitter.immuneCountdown; 

            } 

 

            // cell speed gets reduced 

            cell.time += elapsed / 1000; 

            var cellBreak = cell.time + 1; 

            if (cellBreak > emitter.breakCap) { 

                cellBreak = emitter.breakCap; 

            }; 

            // cell is moved according to speed 

            cell.x += cell.speedX / cellBreak; 

            cell.y += cell.speedY / cellBreak; 

 

            cell.canReproduce = true; 

            cell.reproIn -= emitter.inflammation; 

            cell.immuneCountdown --; 

 

            cell.deathResistance = (cell.angio + cell.proapoptotic + cell.aerobic) / 3; 

 

            // check if cell dies 

            if (((cell.hayflick <= 0 || cell.immuneResistance <= 0) && Math.random() >= 

cell.deathResistance) || sqrLineDistance(cell, emitter) > refDistCircle) { 

                stage.removeChildAt(i); 

                i--; 

                deadCellsTemp ++; 

            } 

        } 

    } 

 

    // output values get updated 

    deadCells += deadCellsTemp; 

    currentCells = allCells - deadCells; 

 

    if (newCellsTemp>0 || deadCellsTemp>0) { 

        cellChange = (newCellsTemp / (newCellsTemp + deadCellsTemp)); 

    } else { 

        cellChange = 0; 

    } 

 

    currentCellsMax = Math.max(currentCellsMax, currentCells); 

    currentCellsMin = Math.min(currentCellsMin, currentCells); 

    deadCellsMax = Math.max(deadCellsMax, deadCellsTemp); 

    deadCellsMin = Math.min(deadCellsMin, deadCellsTemp); 
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    newCellsMax = Math.max(newCellsMax, newCellsTemp); 

    newCellsMin = Math.min(newCellsMin, newCellsTemp); 

 

    ccCollect += cellChange; 

    ccCount ++; 

    ccAverage = ccCollect / ccCount; 

 

} 

 

// output values are added to protocol 

var outputFields = [allCells, newCellsMin, newCellsMax, currentCells, currentCellsMin, 

currentCellsMax, 

          deadCells, deadCellsMin, deadCellsMax, overlappingCells, hayflickReached, 

immuneAttacked, ccAverage]; 

 

console.log(args.slice(2).join(",") + "," + outputFields.join(",")); 

 

Batch Commented 

(Boris Lau, PSIORI GmbH) 

 

var childProcess = require('child_process'); 

var async = require('async') 

 

// number of simulation steps per experiment 

num_iterations = 6000 

num_params = 10 

// number of parallel processes (this is only to increase processing speed and has no impact 

on simulation) 

num_processes = 6 

// number of repetitions per experiment to avoid exeptional values 

num_repetitions = 5 

 

node_cmd = process.argv[0] 

 

// we use an array called "combinations" to store all combinations of dossages we want to 

simulate (each combination will be one experiment) 

// we start with all parameters being normal (dossage 2, dossages 0 and 1 are for inhibition, 

dosages 3 and 4 are for experssion) 

combinations = [{}] 

 

// dossage for changed values is set to 4 (maximum expression) 

var change_value = 4 

 

// get combinations of parameter indexes that should be changed (we create an array of all 

combinations for 1, 2 and 3 chaged values (dossage 4)) 

for (var a=0; a<num_params; a++) { 

    changes = {}; 

    changes[a] = change_value; 

    combinations.push(changes) 

    for (var b=a+1; b<num_params; b++) { 

        changes = {}; 

        changes[a] = change_value; changes[b] = change_value; 

        combinations.push(changes) 

        for (var c=b+1; c<num_params; c++) { 

            changes = {}; 

            changes[a] = change_value; changes[b] = change_value; changes[c] = change_value; 

            combinations.push(changes) 

        } 

    } 

} 

 

// set default parameters to 2 

default_params = [] 

for (var i=0; i<num_params; i++) { 

    default_params.push(2) 

} 

 

// repeat combinations equal to "num_repetitions" times 

repeated_combinations = [] 

for (var i=0; i<num_repetitions; i++) { 

    repeated_combinations = repeated_combinations.concat(combinations); 

} 

 

// here we print the informatoin which is used to initialize an experiment in our protocol 

console.log('num_steps,growth,immune,immortality,inflammation,metastatis,angiogenesis,instabil

ity,deathresistance,energetics,signaling,allCells,newCellsMin,newCellsMax,currentCells,current

CellsMin,currentCellsMax,deadCells,deadCellsMin,deadCellsMax,overlappingCells,hayflickReached,
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immuneAttacked,ccAverage'); 

 

// execute the simulation parallelized (num_processes, only to increase processing speed, no 

impact on simulation) 

async.eachLimit(repeated_combinations, num_processes, function(c, callback) { 

    // clone the default parameter array, and modify 

    p = default_params.slice(0); 

    for (var idx in c) { 

        if (c.hasOwnProperty(idx)) { 

            p[idx] = c[idx] 

        } 

    } 

    cmd = node_cmd + " mitosis_science_simulation.js " + num_iterations + " " + p.join(" "); 

 

    // callback for returning simulation process 

    function res(error, stdout, stderr) { 

        console.log(stdout.trim()); 

        callback(error); // callback for the eachLimit handler 

    } 

    // async call to exec, calls res on return 

    childProcess.exec(cmd, res); 

}); 

 
 

Full Code Hematopoiesis 

(Oliver Worm, PSIORI GmbH) 

 

Simulation Master 

 

# @author Oliver Worm, PSIORI GmbH 

 

# generate all the models and objects needed 

from BloodStream import * 

from BoneMarrow import * 

from StatConfig import * 

 

from Statistics import * 

from MarrowCell import * 

 

import time 

import csv 

 

class SimulationMaster(): 

 

    def __init__(self): 

 

        # generate cell_stats 

        self.cell_stats = StatConfig() 

 

        blood_map = {"ery": 400000, "gran": 500, "throm": 20000} 

        self.blood_stream = BloodStream(blood_map=blood_map, cell_stats=self.cell_stats) 

        self.bone_marrow = BoneMarrow(cell_stats=self.cell_stats) 

        self.bone_marrow.addCell(MarrowCell("cp_1", 70, 0, False)) 

        marrow_map = {"ery": 8000, "gran": 250, "throm": 40000} # 9000, 300, 35000 

        self.bone_marrow.addTransmitters(marrow_map) 

        self.statistics = Statistics(blood_stream=self.blood_stream, 

bone_marrow=self.bone_marrow) 

 

 

 

    def simulationStep(self, tick): 

        time_series = {} 

        current_time = time.time() 

        # remove dead blood cells from the blood stream 

        dead_blood_cells = self.blood_stream.checkDeadCells(tick) 

        time_series["remove_blood_cells"] = time.time() - current_time 

        current_time = time.time() 

        # add transmitters of these dead cells to the bone marrow 

        self.bone_marrow.addTransmitters(dead_blood_cells) 

        time_series["add_transmitters"] = time.time() - current_time 

        current_time = time.time() 

        # assign free transmitters to marrow cells 

        self.bone_marrow.assignFreeTransmitters() 

        time_series["assign_transmitters"] = time.time() - current_time 

        current_time = time.time() 

        # split cells at get all cells that will be transmitted to the blood stream 
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        new_blood_cells = self.bone_marrow.splitCells(tick) 

        time_series["split_cells"] = time.time() - current_time 

        current_time = time.time() 

        # add these cells to the blood stream 

        self.blood_stream.addBloodCells(new_blood_cells, tick) 

        time_series["add_blood_cells"] = time.time() - current_time 

        current_time = time.time() 

        # update statistics 

        self.statistics.addBloodCellValue(tick) 

        self.statistics.addTransmitterValue(tick) 

        self.statistics.addMarrowCellValue(tick) 

        time_series["update_statistics"] = time.time() - current_time 

        self.statistics.addTimeValue(tick, time_series) 

 

 

    def dataExport(self, filename): 

        # export all information to a .csv for analysis 

        filename += ".csv" 

 

        blood_ery = self.statistics.getBloodLine("ery") 

        blood_gran = self.statistics.getBloodLine("gran") 

        blood_throm = self.statistics.getBloodLine("throm") 

 

        total_cells = self.statistics.getMarrowCellLine("total") 

        filled_cells = self.statistics.getMarrowCellLine("filled") 

 

        cp_cells = self.statistics.getMarrowCellGroupLine("cp") 

        ery_cells = self.statistics.getMarrowCellGroupLine("ery") 

        gran_cells = self.statistics.getMarrowCellGroupLine("gran") 

        throm_cells = self.statistics.getMarrowCellGroupLine("throm") 

 

        all_cell_types = list(self.bone_marrow.getCellTypes()) 

        all_cell_types.sort() 

        all_cell_lines = {} 

        for cell_type in all_cell_types: 

            all_cell_lines[cell_type] = self.statistics.getMarrowCellLine(cell_type) 

 

 

 

 

        with open(filename, 'w') as new_file: 

            wrtr = csv.writer(new_file, delimiter=';', quotechar='"') 

            title_row = ['tick', 'blood_ery', 'blood_gran', 'blood_throm', 

'total_marrow_cells', 'filled_marrow_cells', 'cp_group', 'ery_group', 'gran_group', 

'throm_group'] 

            title_row.extend(all_cell_types) 

            wrtr.writerow(title_row) 

            for i in range(len(total_cells)): 

                data_row = [i, blood_ery[i], blood_gran[i], blood_throm[i], total_cells[i], 

filled_cells[i], cp_cells[i], ery_cells[i], gran_cells[i], throm_cells[i]] 

                data_row.extend([all_cell_lines[cell_type][i] for cell_type in 

all_cell_types]) 

                wrtr.writerow(data_row) 

 

BloodStream 

 

# @author Oliver Worm, PSIORI GmbH 

 

# blood stream object, containing all relevant information about its cells 

 

import random 

 

class BloodStream(): 

    def __init__(self, blood_map, cell_stats): 

        # map over each tick and the cells dying in it 

        self.tick_cells = {} 

        # total counter of present blood cells 

        self.blood_cell_count = {} 

        # stats of cells (life span) 

        self.cell_stats = cell_stats 

 

        # generating cells for the initial setup 

        for cell_type, quantity in blood_map.items(): 

            self.blood_cell_count[cell_type] = quantity 

            if not cell_type in self.cell_stats.getBloodCellStats(): 

                # if this cell type is unknown in the blood, this cell wil not die 

                max_life_span = float('inf') 
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            else: 

                # otherwise get the average life span from the stats 

                max_life_span = self.cell_stats.getBloodCellStats()[cell_type].getLifeSpan() 

            for c in range(quantity): 

                # for all cells calculate when it will die and add it to the map 

                death_tick = random.randint(0, max_life_span) 

                if not death_tick in self.tick_cells: 

                    self.tick_cells[death_tick] = {} 

                if not cell_type in self.tick_cells[death_tick]: 

                    self.tick_cells[death_tick][cell_type] = 0 

                self.tick_cells[death_tick][cell_type] += 1 

 

    # check which cells die in this tick 

    def checkDeadCells(self, tick): 

 

        if tick not in self.tick_cells: 

            return {} 

        death_hash = self.tick_cells[tick] 

        # check the cell types in that map entry 

        for cell_type in death_hash: 

            if not cell_type in self.cell_stats.getBloodCellStats(): 

                del death_hash[cell_type] 

            if cell_type in self.blood_cell_count: 

                self.blood_cell_count[cell_type] -= death_hash[cell_type] 

        # this map entry can be deleted as this tick will never appear again 

        del self.tick_cells[tick] 

        return death_hash 

 

    # add new cells to the blood stream 

    def addBloodCells(self, blood_map, tick): 

 

        # works in the same way as init 

        for cell_type, quantity in blood_map.items(): 

 

            if not cell_type in self.blood_cell_count: 

                self.blood_cell_count[cell_type] = 0 

            self.blood_cell_count[cell_type] += quantity 

 

            if not cell_type in self.cell_stats.getBloodCellStats(): 

                death_tick = float('inf') 

                if not death_tick in self.tick_cells: 

                    self.tick_cells[death_tick] = {} 

                if not cell_type in self.tick_cells[death_tick]: 

                    self.tick_cells[death_tick][cell_type] = 0 

                self.tick_cells[death_tick][cell_type] += quantity 

            else: 

                life_span = self.cell_stats.getBloodCellStats()[cell_type].getLifeSpan() 

                for c in range(quantity): 

                    death_tick = (int)(tick + random.gauss(life_span, life_span * 0.1)) 

                    if not death_tick in self.tick_cells: 

                        self.tick_cells[death_tick] = {} 

                    if not cell_type in self.tick_cells[death_tick]: 

                        self.tick_cells[death_tick][cell_type] = 0 

                    self.tick_cells[death_tick][cell_type] += 1 

 

    # get the number of blood cells of a specific type 

    def getBloodCellCount(self, cell_type): 

        if not cell_type in self.blood_cell_count: 

            return 0 

        return self.blood_cell_count[cell_type] 

 

    # check which cell types are currently present in the blood 

    def getBloodCellTypes(self): 

        return self.blood_cell_count.keys() 

 

 

 

BoneMarrow 

 

# @author Oliver Worm, PSIORI GmbH 

 

import random 

from MarrowCell import * 

 

import time 

class BoneMarrow: 
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    def __init__(self, cell_stats): 

        self.marrow_cells = [] 

        self.total_transmitters = {} 

        self.free_transmitters = {} 

        self.marrow_cell_count = {} 

        self.cell_stats = cell_stats 

        # number of cells that have space ein the bone marrow 

        self.marrow_space = 10000 

 

    def addCell(self, new_cell): 

        # add a new cell to the bone marrow 

        cell_type = new_cell.getType() 

        new_cell.setSplitStats(self.cell_stats.getMarrowCellStats(cell_type)) 

        self.marrow_cells.append(new_cell) 

        # add it to the cell counters 

        if not cell_type in self.marrow_cell_count: 

            self.marrow_cell_count[cell_type] = 0 

        self.marrow_cell_count[cell_type] += 1 

 

    def addTransmitters(self, dead_cells): 

        # add free transmitters to the marrow from dead blood cells 

        for cell_type, quantity in dead_cells.items(): 

            trans_type = cell_type + "_trans" 

            if not trans_type in self.total_transmitters: 

                self.total_transmitters[trans_type] = 0 

                self.free_transmitters[trans_type] = 0 

            self.total_transmitters[trans_type] += quantity 

            self.free_transmitters[trans_type] += quantity 

 

    def assignFreeTransmitters(self): 

 

        # first some cells may lose some transmitter 

        for cell in self.marrow_cells: 

            if random.random() > 0.95: 

                for trans_type in cell.getStats().getApplicableTransmitters(): 

                    # should not happen, but if the free transmitter dict doesn't know this 

type... 

                    if trans_type not in self.free_transmitters: 

                        self.free_transmitters[trans_type] = 0 

                    self.free_transmitters[trans_type] += cell.removeTransmitter(trans_type) 

        # which transmitters are present? 

        applicable_transmitters = list(self.free_transmitters.keys()) 

        # as long as transmitters can still be applied 

        while (len(applicable_transmitters) > 0): 

 

            # choose one at random 

            chosen_transmitter = applicable_transmitters[random.randint(0, 

len(applicable_transmitters) - 1)] 

 

            # do we even have transmitter left? 

            if self.free_transmitters[chosen_transmitter] <= 0: 

                applicable_transmitters.remove(chosen_transmitter) 

                continue 

 

            # see if that transmitter can be applied 

            transmitter_applicable = False 

            for cell in self.marrow_cells: 

                if not cell.getFilled() and chosen_transmitter in 

cell.getStats().getApplicableTransmitters(): 

                    transmitter_applicable = True 

                    break 

            # no cell present that this transmitter can bind to? remove it and continue 

            if not transmitter_applicable: 

                applicable_transmitters.remove(chosen_transmitter) 

                continue 

            # check all cells, the ones not already filled are mapped according to their 

filling state and total space 

            orig_distribution_map = [] 

            index_map = [] 

            for index, cell in enumerate(self.marrow_cells): 

                if cell.getFilled(): 

                    continue 

                # make it inverse so cells further down the road have a higher likelihood of 

receiving transmitter 

                transmitter_influence = 

cell.getStats().getTransmitterSpace(chosen_transmitter) 

                if transmitter_influence > 0.0: 



 

 96  

                    # insert the new value 

                    orig_distribution_map.append(1.0 / transmitter_influence) 

                    index_map.append(index) 

 

 

            # choose x random cells from that distribution_map, shortening the total 

iterations needed 

            chosen_cells = [] 

            cell_loop_count = 1 

            if len(orig_distribution_map) > 1: 

                cell_loop_count = random.randint(1, len(orig_distribution_map) - 1) 

 

            for x in range(cell_loop_count): 

                # break if none of that transmitter is left 

                if self.free_transmitters[chosen_transmitter] <= 0: 

                    break 

 

                distribution_map = orig_distribution_map.copy() 

 

                # normalize distribution map and sum up 

                distribution_sum = sum(orig_distribution_map) 

                distribution_map[0] = float(orig_distribution_map[0] / distribution_sum) 

                for i in range(1, len(distribution_map)): 

                    distribution_map[i] = distribution_map[i - 1] + 

float(orig_distribution_map[i] / distribution_sum) 

 

                random_dist = random.random() 

                # find the cell we just chose through the index map 

                chosen_index = 0 

                while distribution_map[chosen_index] < random_dist: 

                    chosen_index += 1 

                # multiple cells are taken, we have to make sure no doubles occur 

                # simply go to the next cell, loop at the end 

                while chosen_index in chosen_cells: 

                    chosen_index += 1 

                    if chosen_index >= len(distribution_map): 

                        chosen_index = 0 

 

                # get the cell chosen by probability 

                chosen_cell = self.marrow_cells[index_map[chosen_index]] 

                # how much of the transmitter can this cell actually take? 

                free_transmitter_space = 

chosen_cell.getFreeTransmitterSpace(chosen_transmitter) 

 

                # can we attach it all? or only some of it? 

                bind_transmitter = min(self.free_transmitters[chosen_transmitter], 

free_transmitter_space) 

                chosen_cell.attachTransmitter(chosen_transmitter, bind_transmitter) 

                # remove the attached transmitter from the quantity of free transmitter 

                self.free_transmitters[chosen_transmitter] -= bind_transmitter 

 

                del orig_distribution_map[chosen_index] 

                del index_map[chosen_index] 

            # we are done with this transmitter for this tick! 

            applicable_transmitters.remove(chosen_transmitter) 

 

    def splitCells(self, tick): 

        # keep track of all cells that were split in this method call 

        split_cells = [] 

        blood_stream_cells = {} 

        # go through all cells in the marrow 

        for cell in self.marrow_cells: 

            # if this cell is dorment or needs transmitter and is not yet filled 

            if cell.getActivationTick() > tick or (cell.getStats().getTransDep() and not 

cell.getFilled()): 

                continue 

 

            # is there even space? if not, only cancer cells can split 

            if len(self.marrow_cells) >= self.marrow_space and not cell.getCancerous(): 

                continue 

 

            # cancer cells can't split all the time 

            if cell.getCancerous() and random.random() < 0.95: 

                continue 

 

            # this cell can be split and can later be deleted 

            split_cells.append(cell) 
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            # check if this cell even has enough telomere to split. otherwise delete. 

            if cell.getTelomereLength() - cell.getStats().getSplitTelomereLoss() <= 0: 

                for trans_type in cell.getStats().getApplicableTransmitters(): 

                    # should not happen, but if the free transmitter dict doesn't know this 

type... 

                    if trans_type not in self.free_transmitters: 

                        self.free_transmitters[trans_type] = 0 

                    self.free_transmitters[trans_type] += cell.removeTransmitter(trans_type) 

                continue 

            # what will this cell differentiate into? 

            split_result = cell.getSplitResult() 

 

            # is this an end-product? 

            if split_result == "ery": 

                if not split_result in blood_stream_cells: 

                    blood_stream_cells[split_result] = 0 

                blood_stream_cells[split_result] += 2 

                for trans_type in cell.getStats().getApplicableTransmitters(): 

                    if trans_type not in self.total_transmitters: 

                        self.total_transmitters[trans_type] = 0 

                    self.total_transmitters[trans_type] -= 

cell.getStats().getTransmitterAttached(trans_type) 

                continue 

            elif split_result == "gran": 

                if not split_result in blood_stream_cells: 

                    blood_stream_cells[split_result] = 0 

                blood_stream_cells[split_result] += 2 

                for trans_type in cell.getStats().getApplicableTransmitters(): 

                    if trans_type not in self.total_transmitters: 

                        self.total_transmitters[trans_type] = 0 

                    self.total_transmitters[trans_type] -= 

cell.getStats().getTransmitterAttached(trans_type) 

                continue 

            elif split_result == "throm": 

                if not split_result in blood_stream_cells: 

                    blood_stream_cells[split_result] = 0 

                blood_stream_cells[split_result] += 20 

                for trans_type in cell.getStats().getApplicableTransmitters(): 

                    if trans_type not in self.total_transmitters: 

                        self.total_transmitters[trans_type] = 0 

                    self.total_transmitters[trans_type] -= 

cell.getStats().getTransmitterAttached(trans_type) 

                continue 

 

            # return the bound transmitter to the marrow if the cell was not end-product 

            for trans_type in cell.getStats().getApplicableTransmitters(): 

                # should not happen, but if the free transmitter dict doesn't know this 

type... 

                if trans_type not in self.free_transmitters: 

                    self.free_transmitters[trans_type] = 0 

                self.free_transmitters[trans_type] += cell.removeTransmitter(trans_type) 

 

            # create first new cell 

            new_telomere_length = cell.getTelomereLength() - 

cell.getStats().getSplitTelomereLoss() 

            dormency = self.cell_stats.getMarrowCellStats(split_result).getSplitDormency() 

            new_activation_tick = int(tick + random.gauss(dormency, dormency * 0.1)) 

            new_cancerous = self.cell_stats.getMarrowCellStats(split_result).getCancerous() 

            new_cell_1 = MarrowCell(split_result, new_telomere_length, new_activation_tick, 

new_cancerous) 

            self.addCell(new_cell_1) 

            # create second new cell depending in whether the cell is self-replicating 

            if cell.getStats().getSelfReplicating(): 

                new_telomere_length = cell.getTelomereLength() - 

cell.getStats().getSplitTelomereLoss() 

                dormency = 

self.cell_stats.getMarrowCellStats(cell.getType()).getSplitDormency() 

                new_activation_tick = int(tick + random.gauss(dormency, dormency * 0.1)) 

                new_cancerous = 

self.cell_stats.getMarrowCellStats(cell.getType()).getCancerous() 

                new_cell_2 = MarrowCell(cell.getType(), new_telomere_length, 

new_activation_tick, new_cancerous) 

                self.addCell(new_cell_2) 

            else: 

                new_cancerous = 

self.cell_stats.getMarrowCellStats(split_result).getCancerous() 
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                new_telomere_length = cell.getTelomereLength() - 

cell.getStats().getSplitTelomereLoss() 

                dormency = self.cell_stats.getMarrowCellStats(split_result).getSplitDormency() 

                new_activation_tick = int(tick + random.gauss(dormency, dormency * 0.1)) 

                new_cell_2 = MarrowCell(split_result, new_telomere_length, 

new_activation_tick, new_cancerous) 

                self.addCell(new_cell_2) 

        # remove all cells that were split! 

        for cell in split_cells: 

            self.marrow_cells.remove(cell) 

            self.marrow_cell_count[cell.getType()] -= 1 

 

        # remove random cells as long as we are over the limit 

        while(len(self.marrow_cells) > self.marrow_space): 

            cell = self.marrow_cells[random.randint(0, len(self.marrow_cells) - 1)] 

            if cell.getStats().getAnkered(): 

                # if this cell is ankered it can not be removed 

                continue 

            # return the bound transmitter to the marrow if the cell was not end-product 

            for trans_type in cell.getStats().getApplicableTransmitters(): 

                # should not happen, but if the free transmitter dict doesn't know this 

type... 

                if trans_type not in self.free_transmitters: 

                    self.free_transmitters[trans_type] = 0 

                self.free_transmitters[trans_type] += cell.removeTransmitter(trans_type) 

            self.marrow_cells.remove(cell) 

            self.marrow_cell_count[cell.getType()] -= 1 

 

        # return the cells that go into the blood stream 

        return blood_stream_cells 

 

 

    def getTotalTransmitterStrength(self, trans_type): 

        if not trans_type in self.total_transmitters: 

            return 0 

        return self.total_transmitters[trans_type] 

 

    def getFreeTransmitterStrength(self, trans_type): 

        if not trans_type in self.free_transmitters: 

            return 0 

        return self.free_transmitters[trans_type] 

 

    def getTransmitterTypes(self): 

        return self.total_transmitters.keys() 

 

    def getTotalCellCount(self): 

        return len(self.marrow_cells) 

 

    def getFilledCellCount(self): 

        count = 0 

        for c in self.marrow_cells: 

            if c.getFilled(): 

                count += 1 

        return count 

 

    def getAverageTelomereLength(self): 

        if len(self.marrow_cells) == 0: 

            return 0 

        total = 0 

        for c in self.marrow_cells: 

            total += c.getTelomereLength() 

        return float(total / len(self.marrow_cells)) 

 

    def getCellTypes(self): 

        return self.marrow_cell_count.keys() 

 

    def getCellCount(self, cell_type): 

        if not cell_type in self.marrow_cell_count: 

            return 0 

        return self.marrow_cell_count[cell_type] 

 

    def getCell(self, index): 

        return self.marrow_cells[index] 

 

    def printCellInformation(self): 

        print("INFORMATION:") 

        for c in self.marrow_cells: 
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            c.printCellInformation() 

            print("----") 

 

MarrowCell 

 

# @author Oliver Worm, PSIORI GmbH 

 

from copy import deepcopy 

from math import ceil 

class MarrowCell: 

 

    def __init__(self, cell_type, telomere_length, activation_tick, cancerous): 

        self.cell_type = cell_type 

        self.telomere_length = telomere_length 

        self.activation_tick = activation_tick 

        self.split_stats = None 

        self.filled = False 

        self.cancerous = cancerous 

 

    def setSplitStats(self, split_stats): 

        self.split_stats = deepcopy(split_stats) 

 

    def attachTransmitter(self, trans_type, trans_quantity): 

        self.filled = self.split_stats.attachTransmitter(trans_type, trans_quantity) 

 

    def removeTransmitter(self, trans_type): 

        self.filled = False 

        return self.split_stats.removeTransmitter(trans_type) 

 

    def getType(self): 

        return self.cell_type 

 

    def getSplitResult(self): 

        return self.split_stats.getSplitResult() 

 

    def getStats(self): 

        return self.split_stats 

 

    def getActivationTick(self): 

        return self.activation_tick 

 

    def getFreeTransmitterSpace(self, trans_type): 

        # catch the case that this cell can't accept this transmitter 

        if not trans_type in self.split_stats.getApplicableTransmitters(): 

            return 0 

        # how filled is this cell already? 

        transmitter_percentage = self.split_stats.getFilledPercentage() 

        # how much of a certain transmitter can be accepted given that percentage? 

        free_space = ceil((1.0 - transmitter_percentage) * 

self.split_stats.getTransmitterSpace(trans_type)) 

        return free_space 

 

    def getFilled(self): 

        return self.filled 

 

    def getCancerous(self): 

        return self.cancerous 

 

    def getTelomereLength(self): 

        return self.telomere_length 

 

    def printCellInformation(self): 

        print("Cell type:", self.cell_type) 

        print("Telomere length:", self.telomere_length) 

 

 

 

MarrowCellStats 

 

# @author Oliver Worm, PSIORI GmbH 

 

from random import randint 

 

class MarrowCellStats: 

 

    def __init__(self, cell_type, split_telomere_loss, split_dormency, transmitter_space, 

split_results, self_rep, cancerous, trans_dependent, is_ankered): 
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        self.cell_type = cell_type 

        self.split_telomere_loss = split_telomere_loss 

        self.transmitter_space = transmitter_space 

        self.transmitter_attached = {} 

        self.split_results = split_results 

        self.split_dormency = split_dormency 

        self.self_rep = self_rep 

        self.filled_percentage = 0.0 

        self.cancerous = cancerous 

        self.trans_dependent = trans_dependent 

        self.is_ankered = is_ankered 

 

    def attachTransmitter(self, trans_type, trans_quantity): 

        if not trans_type in self.transmitter_space: 

            return self.filled_percentage >= 1.0 

        # make space if necessary 

        if not trans_type in self.transmitter_attached: 

            self.transmitter_attached[trans_type] = 0 

        # attach transmitter 

        self.transmitter_attached[trans_type] += trans_quantity 

        self.filled_percentage += float(trans_quantity / self.transmitter_space[trans_type]) 

        return self.filled_percentage >= 1.0 

 

    def removeTransmitter(self, trans_type): 

        # remove all transmitter of that type from the cell 

        if not trans_type in self.transmitter_attached: 

            return 0 

        # reset the filled percentage of that cell to the state without that transmitter 

        self.filled_percentage -= float(self.transmitter_attached[trans_type] / 

self.transmitter_space[trans_type]) 

        return self.transmitter_attached.pop(trans_type) 

 

    def getSplitResult(self): 

        max_trans = 0 

        # assign a random transmitter to catch cancer cells without transmitter 

        best_result = list(self.transmitter_space.keys())[randint(0, 

len(self.transmitter_space.keys()) - 1)] 

        # check which transmitter is (percentage-wise) strongest in this cell 

        for trans_type in self.transmitter_attached: 

            trans_strength = float(self.transmitter_attached[trans_type] / 

self.transmitter_space[trans_type]) 

            if trans_strength > max_trans: 

                max_trans = trans_strength 

                best_result = trans_type 

        return self.split_results[best_result] 

 

 

    def getTransmitterSpace(self, trans_type): 

        # how much of this transmitter can attach to this cell? 

        if not trans_type in self.transmitter_space: 

            return 0 

        return self.transmitter_space[trans_type] 

 

    def getTransmitterAttached(self, trans_type): 

        if not trans_type in self.transmitter_attached: 

            return 0 

        return self.transmitter_attached[trans_type] 

 

    def getApplicableTransmitters(self): 

        return self.transmitter_space.keys() 

 

    def getFilledPercentage(self): 

        return self.filled_percentage 

 

    def getSplitTelomereLoss(self): 

        return self.split_telomere_loss 

 

    def getSplitDormency(self): 

        return self.split_dormency 

 

    def getSelfReplicating(self): 

        return self.self_rep 

 

    def getCancerous(self): 

        return self.cancerous 

 

    def getTransDep(self): 
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        return self.trans_dependent 

 

    def getAnkered(self): 

        return self.is_ankered 

 

 

 

BloodCellStats 

 

# @author Oliver Worm, PSIORI GmbH 

 

class BloodCellStats: 

 

    def __init__(self, cell_type, life_span): 

        self.cell_type = cell_type 

        self.life_span = life_span 

 

    def getLifeSpan(self): 

        return self.life_span 

 

StatConfig 

 

# @author Oliver Worm, PSIORI GmbH 

 

from BloodCellStats import * 

from MarrowCellStats import * 

 

from itertools import combinations 

from copy import deepcopy 

class StatConfig(): 

 

    def __init__(self): 

        # generate healthy blood cell stats 

        self.blood_cell_stats = {} 

        for cell_type in all_blood_cell_types(): 

            cell_stats = BloodCellStats(cell_type, blood_cell_life_span(cell_type)) 

            self.blood_cell_stats[cell_type] = cell_stats 

        # generate healthy marrow cell stats 

        self.marrow_cell_stats = {} 

        for cell_type in all_marrow_cell_types(): 

            cell_stats = MarrowCellStats(cell_type, marrow_cell_telomere_loss(cell_type), 

                                         marrow_cell_split_dormency(cell_type), 

                                         marrow_cell_transmitter_space(cell_type), 

                                         marrow_cell_split_results(cell_type), 

                                         marrow_cell_self_rep(cell_type), 

                                         marrow_cell_cancerous(cell_type), 

                                         marrow_cell_trans_dependent(cell_type), 

                                         marrow_cell_ankered(cell_type)) 

            self.marrow_cell_stats[cell_type] = cell_stats 

 

        # generate list of all possible combinations of defects 

        defects = ["diff", "tel", "tra"] 

        defect_combinations = [] 

 

        final_stages = ["ery_5", "gran_5", "throm_5"] 

 

        cancer_cell_stats = {} 

        for i in range(len(defects)): 

            defect_combinations.extend(list(combinations(defects, i + 1))) 

        for df in defect_combinations: 

            print(list(df)) 

            for mc in self.marrow_cell_stats: 

                new_stats = deepcopy(self.marrow_cell_stats[mc]) 

                final_stage = new_stats.cell_type in final_stages 

                # append mutations to cell name 

                name_app = "" 

                for mut in df: 

                    name_app += "_" + mut 

                new_stats.cell_type = new_stats.cell_type + name_app 

                new_stats.cancerous = True 

                # diff prevents further differentiation = same level! 

                if "diff" in df: 

                    for r in new_stats.split_results: 

                        new_stats.split_results[r] = new_stats.cell_type 

                # no diff? then cancer cells of the next stage with same mutations are 

produced 

                elif not final_stage: 
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                    for r in new_stats.split_results: 

                        new_stats.split_results[r] = new_stats.split_results[r] + name_app 

                if "tel" in df: 

                    # no telomere loss 

                    new_stats.split_telomere_loss = 0 

                if "tra" in df: 

                    # cells will reproduce slower but without transmitter 

                    new_stats.split_dormency = 20 

                    new_stats.trans_dependent = False 

                cancer_cell_stats[new_stats.cell_type] = new_stats 

 

        # append the cancer types to the stats array 

        self.marrow_cell_stats.update(cancer_cell_stats) 

 

    # get these statistics 

    def getBloodCellStats(self): 

        return self.blood_cell_stats 

 

    # get only marrow cell relevant statistics 

    def getAllMarrowCellStats(self): 

        return self.marrow_cell_stats 

 

    # get cell stats of a specific cell type 

    def getMarrowCellStats(self, cell_type): 

        return self.marrow_cell_stats[cell_type] 

 

# what kind of cells are present in normal bone marrow 

def all_marrow_cell_types(): 

    return ["cp_1", "cp_2", "cp_3", "cp_4", "cp_5", 

            "ery_1", "ery_2", "ery_3", "ery_4", "ery_5", 

            "gran_1", "gran_2", "gran_3", "gran_4", "gran_5", 

            "throm_1", "throm_2", "throm_3", "throm_4", "throm_5"] 

 

# how much telomere do they lose in a split 

def marrow_cell_telomere_loss(cell_type): 

    general_loss = 1 

    telomere_loss = {"cp_1": 0, 

                     "cp_2": general_loss, 

                     "cp_3": general_loss, 

                     "cp_4": general_loss, 

                     "cp_5": general_loss, 

                     "ery_1": general_loss, 

                     "ery_2": general_loss, 

                     "ery_3": general_loss, 

                     "ery_4": general_loss, 

                     "ery_5": general_loss, 

                     "gran_1": general_loss, 

                     "gran_2": general_loss, 

                     "gran_3": general_loss, 

                     "gran_4": general_loss, 

                     "gran_5": general_loss, 

                     "throm_1": general_loss, 

                     "throm_2": general_loss, 

                     "throm_3": general_loss, 

                     "throm_4": general_loss, 

                     "throm_5": general_loss} 

    if not cell_type in telomere_loss: 

        return general_loss 

    return telomere_loss[cell_type] 

 

# how long do they have to wait after splitting 

def marrow_cell_split_dormency(cell_type): 

    general_dormency = 5 

    cancer_dormency = 50 

    split_dormency = {"cp_1": general_dormency, 

                      "cp_2": general_dormency, 

                      "cp_3": general_dormency, 

                      "cp_4": general_dormency, 

                      "cp_5": general_dormency, 

                      "ery_1": general_dormency, 

                      "ery_2": general_dormency, 

                      "ery_3": general_dormency, 

                      "ery_4": general_dormency, 

                      "ery_5": general_dormency, 

                      "gran_1": general_dormency, 

                      "gran_2": general_dormency, 

                      "gran_3": general_dormency, 



 

 103  

                      "gran_4": general_dormency, 

                      "gran_5": general_dormency, 

                      "throm_1": general_dormency, 

                      "throm_2": general_dormency, 

                      "throm_3": general_dormency, 

                      "throm_4": general_dormency, 

                      "throm_5": general_dormency} 

    if not cell_type in split_dormency: 

        return general_dormency 

    return split_dormency[cell_type] 

 

# what transmitter types and how much do they need 

def marrow_cell_transmitter_space(cell_type): 

    transmitter_space = {"cp_1": {"ery_trans": 1024, "gran_trans": 1024, "throm_trans": 

10240}, 

                         "cp_2": {"ery_trans": 512, "gran_trans": 512, "throm_trans": 5120}, 

                         "cp_3": {"ery_trans": 256, "gran_trans": 256, "throm_trans": 2560}, 

                         "cp_4": {"ery_trans": 128, "gran_trans": 128, "throm_trans": 1280}, 

                         "cp_5": {"ery_trans": 64, "gran_trans": 64, "throm_trans": 640}, 

                         "ery_1": {"ery_trans": 32}, 

                         "ery_2": {"ery_trans": 16}, 

                         "ery_3": {"ery_trans": 8}, 

                         "ery_4": {"ery_trans": 4}, 

                         "ery_5": {"ery_trans": 2}, 

                         "gran_1": {"gran_trans": 32}, 

                         "gran_2": {"gran_trans": 16}, 

                         "gran_3": {"gran_trans": 8}, 

                         "gran_4": {"gran_trans": 4}, 

                         "gran_5": {"gran_trans": 2}, 

                         "throm_1": {"throm_trans": 320}, 

                         "throm_2": {"throm_trans": 160}, 

                         "throm_3": {"throm_trans": 80}, 

                         "throm_4": {"throm_trans": 40}, 

                         "throm_5": {"throm_trans": 20}} 

    if not cell_type in transmitter_space: 

        return {} 

    return transmitter_space[cell_type] 

 

# what kind of cells are produced in a split 

def marrow_cell_split_results(cell_type): 

    split_results = {"cp_1": {"ery_trans": "cp_2", "gran_trans": "cp_2", "throm_trans": 

"cp_2"}, 

                     "cp_2": {"ery_trans": "cp_3", "gran_trans": "cp_3", "throm_trans": 

"cp_3"}, 

                     "cp_3": {"ery_trans": "cp_4", "gran_trans": "cp_4", "throm_trans": 

"cp_4"}, 

                     "cp_4": {"ery_trans": "cp_5", "gran_trans": "cp_5", "throm_trans": 

"cp_5"}, 

                     "cp_5": {"ery_trans": "ery_1", "gran_trans": "gran_1", "throm_trans": 

"throm_1"}, 

                     "ery_1": {"ery_trans": "ery_2"}, 

                     "ery_2": {"ery_trans": "ery_3"}, 

                     "ery_3": {"ery_trans": "ery_4"}, 

                     "ery_4": {"ery_trans": "ery_5"}, 

                     "ery_5": {"ery_trans": "ery"}, 

                     "gran_1": {"gran_trans": "gran_2"}, 

                     "gran_2": {"gran_trans": "gran_3"}, 

                     "gran_3": {"gran_trans": "gran_4"}, 

                     "gran_4": {"gran_trans": "gran_5"}, 

                     "gran_5": {"gran_trans": "gran"}, 

                     "throm_1": {"throm_trans": "throm_2"}, 

                     "throm_2": {"throm_trans": "throm_3"}, 

                     "throm_3": {"throm_trans": "throm_4"}, 

                     "throm_4": {"throm_trans": "throm_5"}, 

                     "throm_5": {"throm_trans": "throm"}} 

    if not cell_type in split_results: 

        return {} 

    return split_results[cell_type] 

 

# does this cell reproduce itself or do both children differentiate 

def marrow_cell_self_rep(cell_type): 

    self_rep = {"cp_1": True, 

                "cp_2": True, 

                "cp_3": False, 

                "cp_4": False, 

                "cp_5": True, 

                "ery_1": False, 
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                "ery_2": False, 

                "ery_3": False, 

                "ery_4": False, 

                "ery_5": False, 

                "gran_1": False, 

                "gran_2": False, 

                "gran_3": False, 

                "gran_4": False, 

                "gran_5": False, 

                "throm_1": False, 

                "throm_2": False, 

                "throm_3": False, 

                "throm_4": False, 

                "throm_5": False} 

    if not cell_type in self_rep: 

        return True 

    return self_rep[cell_type] 

 

# is this cell cancerous 

def marrow_cell_cancerous(cell_type): 

    cancerous = {"cp_1": False, 

                "cp_2": False, 

                "cp_3": False, 

                "cp_4": False, 

                "cp_5": False, 

                "ery_1": False, 

                "ery_2": False, 

                "ery_3": False, 

                "ery_4": False, 

                "ery_5": False, 

                "gran_1": False, 

                "gran_2": False, 

                "gran_3": False, 

                "gran_4": False, 

                "gran_5": False, 

                "throm_1": False, 

                "throm_2": False, 

                "throm_3": False, 

                "throm_4": False, 

                "throm_5": False} 

    if not cell_type in cancerous: 

        return False 

    return cancerous[cell_type] 

 

# does this cell need transmitters for proliferation 

def marrow_cell_trans_dependent(cell_type): 

    dependent = {"cp_1": True, 

                 "cp_2": True, 

                 "cp_3": True, 

                 "cp_4": True, 

                 "cp_5": True, 

                 "ery_1": True, 

                 "ery_2": True, 

                 "ery_3": True, 

                 "ery_4": True, 

                 "ery_5": True, 

                 "gran_1": True, 

                 "gran_2": True, 

                 "gran_3": True, 

                 "gran_4": True, 

                 "gran_5": True, 

                 "throm_1": True, 

                 "throm_2": True, 

                 "throm_3": True, 

                 "throm_4": True, 

                 "throm_5": True} 

 

    if not cell_type in dependent: 

        return True 

    return dependent[cell_type] 

 

# make this cell ankered in the marrow no matter what happens 

def marrow_cell_ankered(cell_type): 

    ankered = {"cp_1": True, 

                "cp_2": False, 

                "cp_3": False, 

                "cp_4": False, 
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                "cp_5": False, 

                "ery_1": False, 

                "ery_2": False, 

                "ery_3": False, 

                "ery_4": False, 

                "ery_5": False, 

                "gran_1": False, 

                "gran_2": False, 

                "gran_3": False, 

                "gran_4": False, 

                "gran_5": False, 

                "throm_1": False, 

                "throm_2": False, 

                "throm_3": False, 

                "throm_4": False, 

                "throm_5": False} 

    if not cell_type in ankered: 

        return False 

    return ankered[cell_type] 

 

# what kind of blood cells do we have 

def all_blood_cell_types(): 

    return ["ery", "gran", "throm"] 

 

# how long do blood cells live 

def blood_cell_life_span(cell_type): 

    life_span = {"ery": 1200, "gran": 100, "throm": 10} 

    # if the requested cell type is not standard, we assume it to be immortal 

    if not cell_type in life_span: 

        return float('inf') 

    return life_span[cell_type] 

 

 

 

 

 

 

Statistics 

 

# @author Oliver Worm, PSIORI GmbH 

 

class Statistics: 

 

    def __init__(self, blood_stream, bone_marrow): 

        self.blood_cell_series = {} 

        self.marrow_cell_series = {"total": [], "filled": [], "average_telomere_length": []} 

        self.total_transmitter_series = {} 

        self.free_transmitter_series = {} 

        self.blood_stream = blood_stream 

        self.bone_marrow = bone_marrow 

        self.time_stats = {} 

 

    def addBloodCellValue(self, tick): 

        for cell_type in self.blood_stream.getBloodCellTypes(): 

            if not cell_type in self.blood_cell_series: 

                self.blood_cell_series[cell_type] = [0 for x in range(tick)] 

            

self.blood_cell_series[cell_type].append(self.blood_stream.getBloodCellCount(cell_type)) 

 

    def addTransmitterValue(self, tick): 

        for trans_type in self.bone_marrow.getTransmitterTypes(): 

            if not trans_type in self.total_transmitter_series: 

                self.total_transmitter_series[trans_type] = [0 for x in range(tick)] 

                self.free_transmitter_series[trans_type] = [0 for x in range(tick)] 

            

self.total_transmitter_series[trans_type].append(self.bone_marrow.getTotalTransmitterStrength(

trans_type)) 

            

self.free_transmitter_series[trans_type].append(self.bone_marrow.getFreeTransmitterStrength(tr

ans_type)) 

 

    def addMarrowCellValue(self, tick): 

        self.marrow_cell_series["total"].append(self.bone_marrow.getTotalCellCount()) 

        self.marrow_cell_series["filled"].append(self.bone_marrow.getFilledCellCount()) 

        

self.marrow_cell_series["average_telomere_length"].append(self.bone_marrow.getAverageTelomereL

ength()) 
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        for cell_type in self.bone_marrow.getCellTypes(): 

            if not cell_type in self.marrow_cell_series: 

                self.marrow_cell_series[cell_type] = [0 for x in range(tick)] 

            

self.marrow_cell_series[cell_type].append(self.bone_marrow.getCellCount(cell_type)) 

 

    def addTimeValue(self, tick, steps): 

        for method, used_time in steps.items(): 

            if not method in self.time_stats: 

                self.time_stats[method] = [0 for x in range(tick)] 

            self.time_stats[method].append(used_time) 

 

 

    def getLastBloodValue(self, cell_type): 

        if not cell_type in self.blood_cell_series: 

            return 0 

        return self.blood_cell_series[cell_type][-1] 

 

    def getLastTotalTransmitterValue(self, trans_type): 

        if not trans_type in self.total_transmitter_series: 

            return 0 

        return self.total_transmitter_series[trans_type][-1] 

 

    def getLastFreeTransmitterValue(self, trans_type): 

        if not trans_type in self.free_transmitter_series: 

            return 0 

        return self.free_transmitter_series[trans_type][-1] 

 

    def getLastTotalMarrowCellValue(self): 

        return self.marrow_cell_series["total"][-1] 

 

    def getLastFilledMarrowCellValue(self): 

        return self.marrow_cell_series["filled"][-1] 

 

    def getLastAverageTelomereLength(self): 

        return self.marrow_cell_series["average_telomere_length"][-1] 

 

    def getLastTimeValue(self, method): 

        if not method in self.time_stats: 

            return 0 

        return self.time_stats[method][-1] 

 

    def getMarrowCellLine(self, type): 

        if not type in self.marrow_cell_series: 

            return [] 

        return self.marrow_cell_series[type] 

 

    def getBloodLine(self, type): 

        if not type in self.blood_cell_series: 

            return [] 

        return self.blood_cell_series[type] 

 

    def getMarrowCellGroupLine(self, type): 

 

        cell_types = [type + "_" + str(i) for i in range(1, 6)] 

        random_cell_type = list(self.bone_marrow.getCellTypes())[0] 

        combined_values = [0 for x in range(len(self.getMarrowCellLine(random_cell_type)))] 

        for cell_type in cell_types: 

            cell_line = self.getMarrowCellLine(cell_type) 

            for i in range(len(cell_line)): 

                combined_values[i] += cell_line[i] 

        return combined_values 
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84 

15
8 

4 2 2 4 4 2 2 2 2 2 0 0,008454
297 

0,014267
169 

0,637720
033 

0,74877631
7 

0,00878391 0,009232
215 

0,0570159
22 

0,01372144
6 

0,14054055
3 

0,023479116 0,003211
167 

15
9 

4 2 4 2 2 2 2 2 2 2 0 0,005434
971 

0,006978
415 

0,010676
406 

0 0,00430201
7 

0,005488
243 

0,0148121
69 

0,00572606
2 

 0,013439328 0,000496
297 

16
0 

4 2 4 2 2 2 2 2 2 4 0 0,001702
445 

0,003374
32 

0,019029
371 

0 0,00391040
6 

0,001709
29 

0,0104343
44 

0,00176738
3 

 0,020396787 0,000388
359 

16
1 

4 2 4 2 2 2 2 2 4 2 0 0,007843
023 

0,005602
69 

0,023770
036 

0 0,01060141
4 

0,007989
493 

0,0104891
35 

0,00840914
3 

 0,009727308 0,001317
299 

16
2 

4 2 4 2 2 2 2 4 2 2 0 0,006111
422 

0,008491
417 

0,011000
331 

0 0,00314813
7 

0,006192
349 

0,0203383
8 

0,00598555
7 

 0,021601531 0,001598
438 

16
3 

4 2 4 2 2 2 4 2 2 2 0 0,009575
254 

0,007771
563 

0,019042
84 

0 0,00443110
8 

0,009558
559 

0,0189399
6 

0,00955396  0,01400054 0,001153
959 

16
4 

4 2 4 2 2 4 2 2 2 2 0 0,007194
854 

0,005226
73 

0,010081
133 

0 0,00606056
6 

0,007233
371 

0,0113378
86 

0,00715831
7 

 0,015094994 0,000825
452 

16
5 

4 2 4 2 4 2 2 2 2 2 0 0,009176
976 

0,009495
217 

0,021323
761 

0,04151677
5 

0,00822310
2 

0,009137
585 

0,0272623
89 

0,00863146
1 

 0,021633866 0,001392
62 

16
6 

4 2 4 4 2 2 2 2 2 2 0 0,006671
421 

0,008412
531 

0,017721 0 0,00513493
1 

0,006710
996 

0,0176554
38 

0,00688759
6 

 0,021129426 0,000907
165 

16
7 

4 4 2 2 2 2 2 2 2 2 0 0,118000
091 

0,013709
772 

0,552056
572 

0,75894663
8 

0,00931892
6 

0,116436
24 

0,0275561
96 

0,12035773
6 

0,14500619
5 

0,119251102 0,111154
866 

16
8 

4 4 2 2 2 2 2 2 2 4 0 0,046361
107 

0,011179
272 

0,338176
61 

0,38449967
5 

0,01335758
2 

0,046707
236 

0,0342031
33 

0,04806819
4 

0,02690602 0,693997589 0,001212
804 

16
9 

4 4 2 2 2 2 2 2 4 2 0 0,042195
939 

0,005886
408 

0,421047
966 

0,51044998
9 

0,00870291
3 

0,042482
887 

0,0361414
18 

0,04375639
3 

0,12892283
6 

0,067115328 0,005446
544 

17
0 

4 4 2 2 2 2 2 4 2 2 0 0,038373
752 

0,006087
836 

0,623792
018 

0,44528616 0,00498251
6 

0,041786
259 

0,0285535
48 

0,03804018
5 

0,22082393
4 

0,062183551 0,003806
701 

17
1 

4 4 2 2 2 2 4 2 2 2 0 0,048824
603 

0,008461
082 

0,802234
162 

0,38729833
5 

0,01306759 0,047908
955 

0,0203713
4 

0,05311775
5 

0,12720955
9 

0,051659905 0,002807
723 

17
2 

4 4 2 2 2 4 2 2 2 2 0 0,038123
046 

0,006432
585 

0,259400
858 

0,26058401
5 

0,01245460
2 

0,037695
424 

0,0356306
83 

0,04320596
6 

0,08853511
6 

0,054963887 0,002136
86 

17
3 

4 4 2 2 4 2 2 2 2 2 0 0,281624
356 

0,015963
485 

0,580725
307 

0,62661365
5 

0,01069646
2 

0,280711
633 

0,0385132
89 

0,28005029
8 

0,35468047
6 

0,314509495 0,289193
876 

17
4 

4 4 2 4 2 2 2 2 2 2 0 0,030916
842 

0,009880
461 

0,509336
199 

0,54297744
8 

0,00936162
9 

0,031067
299 

0,0165849
54 

0,03138235 0,05272734
7 

0,082397072 0,002635
915 

17
5 

4 4 4 2 2 2 2 2 2 2 0 0,008151
812 

0,008034
581 

0,021071
025 

0 0,00689526
3 

0,008139
66 

0,0132168
16 

0,00795121
6 

 0,022723263 0,001856
461 

            0,040776
419 

0,016884
31 

0,342335
487 

0,11621036
8 

0,01229671
4 

0,040981
072 

0,0319563
64 

0,04273116
6 

0,11432173
6 

0,056041052 0,010144
538 

Table 10 Standard Deviations as Fraction of Mean (Georg & Lau, 2016) 


