
Towards Simulating Carcinogenesis: Modeling and
Simulating Carcinogenesis, Hematopoietic Tissue
Homeostasis and Leukemogenesis

Authors: Jenny Groten, Maximilian Georg, Oliver Worm, Christoph Borner,
Roland Mertelsmann

Submitted: 6. November 2016
Published: 6. November 2016

Volume: 3
Issue: 7

Affiliation: Institut für Molekulare Medizin und Zellforschung
Keywords: Carcinogenesis, Modeling, Simulation, Tissue Homeostasis,

Hematopoiesis, Leukemogenesis
DOI: 10.17160/josha.3.7.253

josha.org

Journal of Science,
Humanities and Arts

JOSHA is a service that helps scholars, researchers, and students discover, use, and build upon a wide
range of content

Institut für Molekulare Medizin und Zellforschung (1)

Medizinische Klinik 1, Universtitätsklinikum Freiburg (2)

Albert-Ludwigs-Universität Freiburg

Psiori GmbH, Freiburg, Deutschland (3)

Towards Simulating Carcinogenesis

Modeling and Simulating Carcinogenesis, Hematopoietic Tissue Homeostasis and

Leukemogenesis

Jenny Groten (1)

Maximilian Georg (1)

Oliver Worm (3)

Christoph Borner (1)

Roland Mertelsmann (2)

 2

“A doctrine of nature can only contain

so much science proper as there

 is in it of applied mathematics.”

 - Immanuel Kant (Ernest Belfort Bax 1786)

 3

1 Abstract

The overall aim of this project was to investigate the fundamental phenotypic traits of

a cancer cell to develop an “in silico” simulation model and, vice versa redefine the

identified characteristics via the established simulation model. Thus, the focus lay on

visualization and interactivity of the simulation.

The previously identified hallmark characteristics (Groten et al., 2016, DOI:

10.17160/josha.3.7.252) were described by mathematical algorithms. Subsequently,

a computational simulation of carcinogenesis has been drawn up employing these

mathematical algorithms. In the next step, the proposed algorithms and correlations

have been tested, validated and adapted through the simulation in several repetitive

phases (http://mertelsmann.psiori.com/).

In a second model, we transferred the novel insights won from the first simulation to

the simulation of hematopoietic tissue homeostasis and leukemogenesis (http://hem-

model.psiori.com/hema_simulation).

Our findings indicate that the ten “Hallmarks” proposed by Hanahan and Weinberg

can be assigned to two different groups, “Growth/Apoptosis Balance” and “Genetic

Fidelity/Immortality”, and that carcinogenesis requires just one alteration in each

pathway group. Modeling Hematopoiesis revealed one missing Hallmark Capability,

“Block of Differentiation”, which we propose to assign to the broader term “Stem Cell

Features”.

In summary, we have developed two simulation models, which both depict previous

assertions as well as provide novel unexpected, hypothesis generating and possibly

underestimated insights and should be increasingly incorporated into prospective

oncologic research. This approach promises to contribute to a novel type of evidence

and hypothesis generation in cancer research, especially in conjunction with Machine

Learning tools, which allow time-lapse experiments, independent self-learning of a

system and, thus, full exploitation of computational power.

2 Table of Contents

1 Abstract .. 3

http://mertelsmann.psiori.com/
http://hem-model.psiori.com/hema_simulation
http://hem-model.psiori.com/hema_simulation

 4

2 Table of Contents .. 3

3 Introduction .. 5

3.1 Preface .. 5

3.2 Aims and Objectives ... 8

4 Materials and Methods ... 10

4.1 Mathematics and Programming .. 10

4.2 Validation Process .. 10

4.2.1 Balancing – Visual Validation ... 10

4.2.2 Regression Analysis – Statistical Validation ... 10

5 Results .. 11

5.1 Modeling and Simulation .. 11

5.1.1 In Silico Research ... 11

5.1.1.1 General .. 11

5.1.1.2 Analytical versus Simulating Models ... 12

5.1.1.3 Machine Learning .. 13

5.1.1.4 Bioinformatics in Evolutionary Biology .. 14

5.1.1.5 Bioinformatics in Oncology .. 15

5.1.2 Towards Simulating Carcinogenesis .. 18

5.1.2.1 Approaches – Primary Models ... 18

5.1.2.2 Simulating Cancer Treatment Response .. 19

5.1.2.3 Simulating Carcinogenesis based on the “Hallmarks of Cancer” ... 25

5.1.3 Towards Simulating Hematopoiesis and Acute Myeloid Leukemia 46

5.1.3.1 Establishing Physiological Hematopoiesis after Transplantation: Tissue Homeostasis 47

5.1.3.2 Simulating Leukemogenesis: Acute Myeloid Leukemia ... 54

5.2 The Hallmark Concept Revisited ... 66

6 Discussion ... 69

7 Summary ... 73

8 References .. 75

9 Figures .. 80

10 Tables .. 82

11 Acknowledgements ... 84

12 Appendix ... 85

 5

12.1 Full Simulation Codes ... 85

12.2 Ridge Regression – Standard Deviations ... 106

3 Introduction

This introduction has been previously published (Groten et al., 2016) since it is

pertinent to the previous and the current publication.

3.1 Preface

“Cancer is a leading cause of death, and cancer incidence is expected to increase

worldwide in the coming decades. But today, cancer research is on the cusp of

major breakthroughs. It is of critical […] importance that we accelerate progress

towards prevention, treatment, and a cure -- to double the rate of progress in the

fight against cancer -- and put ourselves on a path to achieve in just 5 years

research and treatment gains that otherwise might take a decade or more.”

(Barack Obama, January 28, 2016)

With this statement, the President of the United States recently laid the foundations

to reenter the fray against cancer (Obama 2016). Calling for a new initiative,

headed by Vice-President Biden, he established the “White House Cancer

Moonshot Task Force”, consisting of members of various departments, to unite

researchers, oncologists, patient representatives, economists, politicians and

philanthropists in the envisaged revolution of the cancer research landscape (Lowy

& Collins 2016). In fact, cancer is still the second-leading cause of death after

cardiovascular diseases in Germany (Bundesamt 2014) as well as worldwide (WHO

2016b). Cancer mortality rates apparently have diminished during the last 25 years

(Lowy & Collins 2016; IARC 2016b). However, according to the World Health

Organization (WHO) the worldwide incidence of cancer is estimated to increase by

about 70 % in the next two decades, which means an absolute number of annual

cancer cases of up to 22 million instead of 14 million in 2012 (WHO 2016a). In the

face of these alarming data, one might assume that an international commitment to

cure cancer once and for all is more than overdue. However, in fact, in the long

struggle against cancer, it is not the first governmental attempt to raise the cancer

issue on a national, and thereby, public and more intense level. On the contrary, it

was President Franklin D. Roosevelt who established the National Cancer Institute

(NCI) with the help of the National Cancer Act of 1937 (National Cancer Institute

 6

2016a). Later, on December 23, 1971, his successor President Richard Nixon

signed into law the National Cancer Act of 1971 to make the “Conquest of Cancer

[…] a national crusade”. It should broaden the role of the National Cancer Institute

(NCI), at that time a part of the National Institutes of Health (NIH), and extended its

mandate to the future application of the research results to decrease the incidence,

morbidity, and mortality due to cancer (National Cancer Institute 2016b). In Europe,

several national and international associations with similar aims were founded. In

1933, the Union Internationale Contre le Cancer (UICC) was founded in Geneva

(UICC 2014). Later, the International Agency for Research on Cancer (IARC) was

established as the specialized cancer agency of the World Health Organization

(WHO) (IARC 2016a). In Germany the Deutsches Krebsforschungszentrum (DKFZ)

was formed in 1964 (Deutsches Krebsforschungszentrum 2016). The research

objectives of the current campaigns, ranging from cancer vaccines to data sharing

and the promotion of innovative and exceptional approaches, obviously reflect the

urge to rethink the oncologic research landscape (Lowy & Collins 2016). In the time

of big data and information sharing the focus increasingly lies in data collection,

analysis, evaluation and implementation. One compelling example is the massive

decoding of the human cancer genome through next-generation DNA sequencing

(Hayes & Kim 2015). Paradoxically, at first sight, a major shift in patient care takes

place at the same time, edging away from Evidence-Based Medicine (EBM) to a

Personalized Medicine (PM) (Sugarman 2012a). In PM, patients are individually

diagnosed and treated with innovative treatments, far off the beaten track, are given

a place. This movement can undoubtedly be rated as a major turning point in the

history of cancer research, which has been focused on detecting regularities and

defining classifications for a long time. Here, the role of Bioinformatics becomes

inevitable to enable big data and PM to go hand by hand allowing novel and

innovative perspectives, where traditional EBM has recognized its limitations.

Knowledge and data regarding the carcinogenesis process and cancer treatment

 7

have increased dramatically and have finally reached an unmanageable complexity.

Common lab experiments and clinical trial tools can no longer provide adequate

opportunities to investigate carcinogenesis and cancer treatment as a whole or even

its sheer endless number of subunits and possible interactions. A result is the

reductionist approach leading to delusive selective insights into complex biologic

processes, similar to the parable of the blind monks examining an elephant, who all

fail to recognize the creature as a whole, since they only examined a small part each

(Fig. 1). This approach, by far, does not satisfy cellular heterogeneity and “noise”,

two fundamental characteristics of cellular and system behavior (Walker & Southgate

2009). Bioinformatics provides a solution, implementing mathematical models and

information theory, which bring along massive computational power exceeding the

limited capacity of the human mind, to address the complexity of data, correlations,

and calculations. These so called in silico experiments and analyses are time-saving

and, nevertheless, encompassing and lead to in-depth results. Thereby, analytical

models can be distinguished from simulation models. Analytical models have

experienced broad implementation during the last decade, for example, regression

analyses have been used for statistical purposes, such as the prediction of affinity

profiles of nucleic acid-binding protein from the protein sequence (Pelossof et al.

2015). In contrast, simulation models have hardly received attention, despite a broad

and fruitful application in other disciplines, such as engineering, economics or some

aspects of biology, where it has become the state-of-the-art solution for

understanding and optimizing processes

and complex systems (Suthaharan 2016;

Sütterlin 2015). In both analytical and

simulating model types, machine learning

can be applied by means of self-teaching

systems which are equipped with basic

parameters, fundamental conditions and

feedback mechanisms to evaluate target

parameters. It shows the significant

advantage of optimizing a process without

an entire knowledge of the actual

mechanisms, parameters, and measurements and, therefore, increases the

probability of unexpected outcomes (Riedmiller et al. 2009). In comparison to

Figure 1 Blind monks examining an elephant,
Hanabusa Itcho,
https://en.wikipedia.org/wiki/Blind_men_and_an_eleph
ant, 2016

 8

analytical models, simulation models provide various benefits. Probably, the most

essential aspect is the additional dimension of a simulation, time. This supplement

allows the observation and calculation of a development over time and further

enables the evaluation of data at any arbitrary point in time. Moreover, a simulation

represents a tool to visualize processes and, thereby, increase comprehension of

mechanisms and operations. An additional feature, which seems quite essential in

scientific research, is the possibility to alter an ongoing process by adjusting any

parameter at any discretionary time and directly achieve tangible results. Regarding

the investigation of cell behavior and system interactions, simulations allow a

“middle-out” approach, instead of common “top-down” or “bottom-up” models,

focusing on the cell, as the “basic unit of life” (Walker & Southgate 2009).

A typical example of the exploitation of the aforementioned simulation features

including machine learning tools, is the investigation of evolutionary processes,

which are by nature determined by probability and chance and bear a great

potential to evolve unpredictable effects (Mertelsmann & Georg 2016).

In sight of the widely accepted hypothesis of carcinogenesis as an evolutionary

development (Almendro et al. 2013; Beerenwinkel et al. 2015; Cairns 1975; Klein

2013; Greaves & Maley 2012; Hanahan & Weinberg 2011; Merlo et al. 2006; Nowell

1976; Vogelstein et al. 2013; Willyard 2016) it seems reasonable indeed to

establish the use of machine learning, simulation models in particular, in cancer

research. Recent emphasis on the pivotal role of chance in the development of

malignant diseases (Tomasetti & Vogelstein 2015; Luzzatto & Pandolfi 2015) even

fosters the perception of simulation models as the next logical step in the

investigation of carcinogenesis.

“It is the quality of our work which will please God and not the quantity.”

- Mahatma Gandhi (Alli 2013)

While current cancer research focuses on data generation, the next major step

promises to be a view from a meta-level by exploring data analysis, which,

hopefully, will lead to better understanding and novel concepts of cancer

prevention, diagnosis, control and therapy.

3.2 Aims and Objectives

 9

To address the need for in silico simulation models mentioned above, we want to

provide a visually attractive and interactive, and at the same time plausible and

qualitatively valid simulation model of carcinogenesis and cancer treatment,

developed from experimental data. Thereby, the overall objective is to offer a novel

tool for basic, clinical and therapeutic research, as well as a teaching tool to make in

silico research tangible and applicable to a wide audience.

In the present research, the focus lies on the collection and review of relevant data,

the formation process of the developed simulations and the first qualitative validation

process. In this context, the term validation is used to document the close

resemblance of the qualitative prediction of the in silico simulation and real-life

biological and clinical data extracted from the relevant literature.

To accomplish this aim, we will address the following research objectives:

1. Identify the essential “Hallmarks of Cancer”, based on literature review. The

term “Hallmarks of Cancer” was adopted from Hanahan and Weinberg

(Hanahan & Weinberg 2000; Hanahan & Weinberg 2011) and defines the

most fundamental phenotypic characteristics of cancer cells, which are

assumed to distinguish the latter from normal cells.

2. Consider literature about the history of cancer research, the hallmarks of

cancer, presented by Hanahan and Weinberg, the genetic hallmarks with a

focus on gene expression, the principles of evolution, entropy and chance in

cancer, the basis of cancer treatment and recent research strategies to

develop a new concept of phenotypic cancer hallmarks.

3. Evaluate and synthesize the elaborated hallmark capabilities.

4. Develop mathematical models and algorithms to describe the hallmark

characteristics of carcinogenesis.

5. Develop a computational simulation of carcinogenesis based on the

algorithms.

6. Test, validate and adapt the algorithms and correlations via repetitive

simulation phases.

7. Transfer the insights from the first simulation to a simulation of hematopoiesis.

8. Simulate hematopoietic tissue homeostasis, the establishment of

hematopoiesis after stem cell transplantation and leukemogenesis.

9. Reevaluate the “Hallmark Concept” in the light of the simulation results.

 10

4 Materials and Methods

4.1 Mathematics and Programming

Mathematical models were developed using the review of pertinent literature.

Algorithms and conditions described the mathematical models. These algorithms

were then used to program simulations. Programming languages applied here were

Python, Java, and JavaScript. For the exact codes, see the Appendix.

4.2 Validation Process

4.2.1 Balancing – Visual Validation

The first validation step, which we performed during the development of the

simulation, was a tool called “Balancing” (Schell 2015). Here, “Balancing” defines a

strategy normally applied in Game Design and describes a process of iterative

observation, testing, and comparison to known evidence and subsequent adaptation

of the settings of the simulation, until the resulting processes and developments

visually resemble the processes and mechanisms depicted in pertinent literature and

seem mainly plausible. This strategy is preferably implemented by several people

from different perspectives (Schell 2015).

4.2.2 Regression Analysis – Statistical Validation

The second validation step was a statistical analysis of possible correlations between

the different parameters by computational regression analysis. For the analysis, we

applied the function for Ridge Regression (Suthaharan 2016; Pedregosa et. al.

 11

2011). Therefore, evolutionary sections of the simulation were eliminated. For the

analysis, we parameterized both pathways and defined cell characteristics, so that

their correlations could be investigated.

After running a pre-loop, settings with all possible combinations of one, two and three

pathways set to the maximum value were simulated for 6000 ticks, which equaled

120 days in real time. To achieve better statistical power, they were repeated six

times each. Every simulation round started with six stem cells. All pathways were set

to an average level. The pathways to be altered were set to the maximum level.

During the simulation, the parameterized cell characteristics were measured at pre-

defined points in time. The results were analyzed employing the equation of Ridge

Regression (Pedregosa et. al. 2011).

5 Results

5.1 Modeling and Simulation

5.1.1 In Silico Research

5.1.1.1 General

One tool to address both the rising demands for a more encompassing investigation

of the processes occurring in malignant diseases as well as for the implication of

personalized medicine in oncology is the so-called in silico research. The term,

describing the application of mathematical models, information theory, machine

learning and computer simulation in biological and medical research, is added to the

common expressions in vivo and in vitro and was coined to emphasize the equality of

the role of bioinformatics in biomedical sciences in comparison to traditional research

methods. It comprises the analysis, visualization, and prediction of natural processes

by collecting, cataloging, altering and modeling data employing algorithms and

computation (Nature 2016). Computational analysis thereby allows the processing of

huge amounts of data as well as the performance of highly theoretical studies and

 12

experiments under precise and selected conditions to avoid disturbance variables

and to minimize the complexity of biological events (Mackey et al. 2015).

Mathematically, the benefits of information-theoretical analysis lie in the ability to map

multi-parametric processes and systems, both respecting continuous and discrete

variables, by the application of measures of “entropy” and “mutual information” (Blokh

& Stambler 2016). In contrast, the more common reductionist approach leads to

delusive selective insights into complex biologic processes, which do by far not

satisfy cellular heterogeneity and “noise”, two fundamental characteristics of cellular

and system level behavior (Walker & Southgate 2009).

Information-theoretical methods can be used in different modalities with different

consequences and desirable outcomes. First, they can serve as a tool to develop

patterns derived from empirical measures and exploit the full information hidden in

gathered data. Examples are the construction of probability functions for parameter

inference or the examination of correlations between different parameters, for

instance, via linear regression analysis (Mackey et al. 2015; Blokh & Stambler 2016;

Suthaharan 2016). Second, mathematical models can serve as “proof-of-concept

tests” of logical predictions in verbal hypotheses and represent valid tests themselves

to evolve further testable quantitative predictions. As verbal hypotheses, based on

general assumptions, which are modified deliberately by inclusion and exclusion of

certain factors, generally follow a chain of logic to draw conclusions, they provide

ample scope for logical errors and oversight. In contrast, the implication of

mathematical models facilitates the validation of verbal chains of logic by displaying

the assumptions above mathematically. To describe a process to be tested properly,

assumptions have to be made explicit. Thus, the precise nomination and

characterization of critical assumptions reduce the probability of logical error.

At last, the described methods cannot only abstract complex data, but they can also

provide new qualitative data to be further elaborated in empirical research. For

instance, unknown or underestimated phenomena can be discovered, or

assumptions hidden in a verbal hypothesis can be detected, as the synthetic system,

different from a logical chain, can also show counterintuitive outcomes (Mackey et al.

2015).

5.1.1.2 Analytical versus Simulating Models

 13

As mentioned above, so-called in silico experiments and analyses allow time-saving

and, nevertheless, encompassing and in-depth investigations. Apart from the

aforementioned mathematical models, one can distinguish analytical models from

simulation models. Analytical models have widely been implemented in biologic and

cancer research. For instance, the prediction of affinity profiles of nucleic acid-

binding protein from the protein sequence has been achieved via statistical

regression analyses (Pelossof et al. 2015). In contrast, despite a strong implication

in other fields, like engineering, economics or some aspects of biology, simulation

models have barely been applied in oncology. In these disciplines, it has become a

common solution for understanding and optimization of processes and complex

multi-parametric systems (Suthaharan 2016; Sütterlin 2015). In contrast to

analytical models, simulation models provide several advantages. First, the

additional dimension of a simulation, time, offers a plethora of observational and

analytical possibilities, as well as the capability to interact simultaneously. It

enables to observe and calculate a development over time and allows the

evaluation of data at any arbitrary point in time. Besides, a simulation provides the

ability of visualization and thereby increases the understanding of mechanisms and

operations. Additionally, the possibility to interact allows the alteration of ongoing

processes by adjusting any parameter at any arbitrary time and directly achieve

visible results. In conclusion, simulations thereby provide a “middle-out” approach

to the investigation of multiparametric cellular systems, instead of common “top-

down” or “bottom-up” models, focusing on the cell, as the “basic unit of life” (Walker

& Southgate 2009).

5.1.1.3 Machine Learning

Both analytical and simulating model types can be extended by the application of

Machine Learning tools. These tools represent a group of self-teaching systems

which work with predefined basic parameters, conditions and feedback

mechanisms to optimize a process due to a chosen end point. It provides the

benefit that processes can be investigated and optimized without knowledge of the

entirety of actual mechanisms, parameters, and measurements. Also, the

probability of unexpected outcomes is high due to the non-deterministic

prerequisites (Riedmiller et al. 2009).

 14

5.1.1.4 Bioinformatics in Evolutionary Biology

As Evolution is known to be a complex multi-parametric process with a large time

scale, mathematical models are widely utilized as a solution to the analysis and

simulation of evolutionary developments (Mackey et al. 2015).

Evolution bears various phenomena that, additionally, are connected via various

correlations. To reveal the impact of each factor, as well as the related interaction

with other factors, one would have to test each evolutionary parameter one at a time

in a wet-lab experiment, which is simply impossible to perform in sight of the

immense amount of possibilities. Further, it is impossible to reproduce realistic

environmental conditions in a lab, as many phenomena exist concurrently. The

investigation of real organisms, on the other hand, brings along a lack of abstraction

and control in experiments performed to test hypothesized phenomena. In Silico

approaches in evolutionary biology represent methods consisting of simulated

organisms and populations, which are observed and tested in synthetic experiments.

In these experiments evolutionary conditions of the organisms and the evolutionary

process, respectively, can be characterized precisely and set perfectly one at a time

to test the individual effects on the genome and the organization of both the organism

and the population (Batut et al. 2013). This way simulated organisms can be

observed during competition and reproduction, while phenomena like “linkage,

epistasis, demographic and environmental variability and behavior” (Mackey et al.

2015) are considered. Total control is given by the possibility to apply random, hand-

written or former evolved genomes and to set e.g. the mutation rate, the fitness

measure or the spatial arrangement of a population. The implication of synthetic

experiments provides various advantages, for instance, they can be repeated

limitlessly to gain statistical power. Furthermore, one can observe as many

generations as necessary and the events, both in genotype and phenotype, can be

recorded simultaneously. In synthetic experiments, depictions vary from

mathematical functions to graphs, sequences of nucleotides, 2D- and 3D-simulations

as well as computer games.

Previous examples of implications of mathematical models in evolutionary processes

have led to clarity in areas of the role of sex, the origin of new species (Mackey et al.

2015) and nucleotide sequences and their functions (Batut et al. 2013). Pelossof et

al. performed an example of machine learning by the development of an algorithm of

 15

“affinity regression” to predict the recognition code of nucleic-acid-binding proteins

(Pelossof et al. 2015).

Evolutionary algorithms have also been applied in adversarial games with high

branching factors and a non-deterministic outcome to achieve the best possible

action sequence in each turn. A method called “rolling horizon evolution” was used to

let the controller learn to play on its own, starting from a random population, which is

enabled to evolve an offspring by uniform crossover and random mutation in the

subsequent (Justesen et al. n.d.).

5.1.1.5 Bioinformatics in Oncology

As the perception of cancer as an evolutionary process is widely spread in the

present research landscape (see above), the aforementioned mathematical models

and information-theoretical simulations have been applied to oncology in several

approaches. Advances worth mentioning are for instance the detection of meta-

markers in breast cancer (Blokh et al. 2007), investigations of DNA-methylation

processes (De Carvalho et al. 2012), revelation of the role of microRNA and proteins

in prostate cancer (Alshalalfa et al. 2013), the examination of gene-gene- and gene-

environment correlations in bladder cancer (Fan et al. 2011) and the deviation of

transcriptional profiles in cancer cells (Blokh & Stambler 2016). Furthermore, oligo-

parametric simulation models have been developed to investigate targeted therapy of

cancer, with the possibilities of cell death and Boolean states of mutations to

symbolize resistance (Komarova & Wodarz 2016). Two models that played a crucial

role as models for the development of our work shall be explained in detail here.

A spatial 3-dimensional model was developed by Waclaw et al. in 2015 to elucidate

how cell dispersal and turnover could contribute to rapid cell mixing inside a tumor

(Fig. 9) (Waclaw, Bozic, Pittman, Hruban, Vogelstein, et al. 2015). They first modeled

metastasis as an expansion of cancer cells, which have left their primary site,

assumed to have acquired all necessary driver gene mutations in advance. Then

they let cells replicate stochastically according to the number of surrounding empty

spaces. They found that a cell without any neighboring cells replicates at the maximal

rate of

b = ln (2) = 0.69 ^ (-1) (Waclaw, Bozic, Pittman, Hruban, Vogelstein, et al. 2015),

 16

whereas a surrounded cell does not replicate at all.

Assuming that a cell moves with the probability M to a certain place near the surface

of the lesion, comparable to short-range migration due to an epithelial-to-

mesenchymal transition (EMT), they observed that cells with little dispersal (M=0)

build strictly spherical tumors at larger size, while cells with dispersal M>1 derive

conglomerates of several small round structures. This outcome proved to be

equivalent to observations made in real metastatic lesions, where round tumor

structures were found to be divided into groups of non-neoplastic stromal cells and

extracellular matrix. So they elucidated the firm correlation between cell dispersal

and the growth rate of the tumor, as well as the probability of metastasis.

Figure 2 Short-range dispersal affects size, shape and growth rate of tumors, A spatial model predicts that

dispersal and cell turnover limit intra-tumor heterogeneity, Waclaw, Bozic, Pittman et al., 2015

Mathematically, they applied the “Eden lattice model” to simulate the combination of

genetics, spatial expansion, and short-range cell dispersal. To simplify the simulation,

they did not model metabolism, mechanics, spatial tissue heterogeneity, different cell

types or angiogenesis. A tumor was modeled by a group of non-overlapping balls or

microlesions of cells. Each evolving cell was associated with a certain position and a

list of genetic alterations over time, whereby it was differentiated between passenger,

driver and resistance-carrying mutations. Driver mutations were modeled to increase

the growth rate by deregulating cellular divisions and give an advantage to increased

proliferation and decreased apoptosis. In a cell division, each daughter cell is

provided with n new genetic alterations of each type, with n being different in both

cells and randomly calculated from the Poisson probability distribution. The vast

 17

majority of their results was consistent with experimental findings, which emphasized

the applicability and validity of mathematical models for biological processes

(Waclaw, Bozic, Pittman, Hruban, Nowak, et al. 2015).

Mertelsmann and Georg provided a distinct approach with the help of a virtual game

called “Mitosis”. To address a wider audience, they modeled an interactive simulation

to provide a tool to describe and actively model evolutionary processes, which can

eventually lead to malignancy as well. For simplicity, they reduced the relevant cell

mechanisms to ten fundamental intrinsic parameters called “Hallmarks of Evolution”

and six external environmental parameters (Tab. 4).

“Hallmarks of Evolution” Environmental Parameters

Reproduction Oxygen (O2)

Regeneration pH

Energy Store Temperature

Absorption Nutrition

Agility Mutation Rate

Interaction Cytokines

Attack

Defense

Lifetime

Receptor Sensitivity

Table 1 “Hallmarks of Evolution” and Environmental Parameters, Cancer: Modeling evolution and natural
selection, the „Mitosis Game“, Mertelsmann & Georg, 2016

The whole simulation is based on evolutionary algorithms. The controller can adjust

different tools, both altering the intrinsic and the environmental conditions, to grow a

cell population and observe cell progression (Fig. 10).

 18

Figure 3 Surface of the Mitosis Game, Cancer: Modeling evolution and natural selection, the “Mitosis Game“,
Mertelsmann & Georg, 2016

The novelty as compared to previous models is the fact that the genome of a cell

cannot be changed directly, but can only be influenced by alterations in the

parameters, which have an impact on the probability of cell survival. This way, the

simulation follows the rules of random mutation and natural selection (Mertelsmann &

Georg 2016).

5.1.2 Towards Simulating Carcinogenesis

5.1.2.1 Approaches – Primary Models

The first versions of our simulation of carcinogenesis are primarily based on the

model of the aforementioned “Mitosis-Game” by Mertelsmann and Georg

(Mertelsmann & Georg 2016). The main aim is to ease control and handling of the

former rather complex and undetermined game, which was previously supposed to

address both gamers and scientists while maintaining the capability of interaction to

appeal to a more scientific target audience. The new simulations are meant to serve

as an educational tool as well as an approach to allow a broad range of scientists to

explore the applicability of computational models in oncology, concerning both basic

research and clinical trials. Therefore, the focus of the recent models lies in the

 19

improvement of comprehensibility and clarity by reduction of complexity and increase

of transparency of the simulated processes.

5.1.2.2 Simulating Cancer Treatment Response

The first approach consists of a simulation of tumor growth, treatment response, and

resistance. On the surface of the simulation, there is a petri dish containing

continuously growing cells, representing a malignant cell population. Cell

characteristics and behavior can be influenced by ten different targeted therapies.

Their application can be controlled by adjusting the related “+” and “-” buttons placed

around the petri dish, with “+” increasing the allocated therapeutic dosage and “-”

decreasing the assigned therapeutic dosage. Each targeted therapy is accompanied

by a description of the attacked cellular pathway, the so-called “Hallmark”, frequently

altered in a malignant cell (Fig. 11) (Hanahan & Weinberg 2000; Hanahan &

Weinberg 2011). In the beginning, the dosage of each drug is set at an average

concentration to represent a steady state of malignant growth with all pathways

partially mutated in equal parts.

Figure 4 Surface of the Simulation of Cancer Therapy, Georg, Groten, Mertelsmann et al., 2016

 20

The concrete therapies considered in this simulation are listed in Table 5:

Targeted Therapy Cellular Pathway

Cyclin-Dependent Kinase Inhibitor Evading Growth Suppressors

Immune-Activating anti_CTLA4 mAB Avoiding Immune Destruction

Telomerase Inhibitor Enabling Replicative Immortality

Selective Anti-Inflammatory

Derivative

Tumor-Promoting Inflammation

HGF/c-Met Inhibitor Activating Invasion and Metastasis

VEGF Inhibitor Inducing Angiogenesis

PARP Inhibitor Genome Instability and Mutation

Pro-Apoptotic BH3 Mimetic Resisting Cell Death

Aerobic Glycolysis Inhibitor Reprogramming Cellular Energetics

EGFR Inhibitor Stimulating Proliferative Signaling

Table 2 Targeted Therapies and related Cellular Pathways, Georg, Groten, Mertelsmann et al., 2016, Hanahan &
Weinberg, 2011

For further evidence about each registered Cellular Pathway, see paragraph “The

Hallmarks of Cancer” (Hanahan & Weinberg 2000; Hanahan & Weinberg 2011).

Moreover, randomly acquired resistance to distinct therapeutic drugs can be

activated via an “Evolution”-Button above the petri dish, choosing between the states

“on” and “off”. This way, cellular behavior and treatment response can be observed in

the case of randomly acquired resistance.

5.1.2.2.1 Logical Background and Programming

The whole simulation is written in JavaScript and executable in every common web

browser. Easel.js is applied as an additional library.

At the beginning of the simulation, there is one single cell, which subsequently

divides into two, one new daughter cell and one renewed parent cell. Each evolving

cell in the simulation exhibits six different characteristics: Color, Position, Velocity,

Direction Vector, Hayflick-Limit and a Boolean State (YES/NO-State) of Immune

Attack. For each newly built cell, these characteristics are tested and calculated in a

chronological order depending on the concentration of therapeutic drugs, which will

be further elucidated below. First, the features themselves, their biological relevance

and their calculation will be explained.

 21

Color

Each viable cell is colored green.

Further color coding is used for the state “Imminent Apoptosis” (light blue) and the

state of “Immune Attack” (dark gray/red contour), which will be depicted below.

Position

The simulation interface is defined via a two-dimensional coordinate system. The fist

cell always starts at the center of the visible part of the coordinate system. The Cell

Position of each evolving cell is calculated taking into account the former position of

the parent cell. The new daughter cell will be placed at a spot around the parent cell,

at a random angle in the distance of the diameter of a cell between the centers of the

cells. In the current simulation, this happens without considering the availability of

space. As a result, cells frequently pile up on top of one another, whereby the

younger cell is placed on top of the former cells.

Velocity

The speed of a cell is defined as pixel per tick. It ranges from 0.1 to 1 and depends

on the value of the HGF/c-Met Inhibitor which decreases the capacity to invade and

metastasize. At the starting point, the speed of a cell is 0.5 pixel/tick. After each tick,

the speed of a cell decreases exponentially, till it runs towards zero.

Direction Vector

The Direction Vector is a vector two, which determines the direction of cell

movement. It is allocated randomly to every evolving cell and remains unchanged for

the whole lifetime of the cell.

Hayflick-Limit

The Hayflick-Limit defines the number of possible divisions of a cell. It depends on

the length of the chromosomal telomeres, which decreases in a standard cell with

every cell division. To fasten and ease the processes observed in the simulation the

default Hayflick-Limit is determined much smaller than in reality. In the simulation, the

default Hayflick-Limit of a normal stem cell is 5 in contrast to the realistic number of

72, 50 to 70 respectively (Shay & Wright 2000). If a cell shows a Hayflick-Limit of 1 or

 22

less at the time of testing, it is marked with the color light blue and will die in the next

tick in accordance to apoptosis.

Immune Attack

Another state, a cell can show, is the state of being recognized and attacked by the

immune system. This state is a Boolean state. Proposing that once a cell has been

detected as a target cell, it will be eliminated by the immune system, a cell in this

irreversible state is coded with the color dark gray with a red contour and will be dead

after ten ticks. The probability of Immune Attack depends on two targeted therapies.

First, the concentration of “Immune-activating anti_CTLA4 mAB” determines the

interval and thereby the likelihood of testing. The test interval ranges between 90 and

ten ticks. Second, the concentration of “PARP inhibitors” further alters the probability

of testing with a range of 1 to 10 %, presuming that the probability of detection by the

immune system rises with the likelihood of mutation.

The Targeted Therapies

Each therapeutic drug is provided a particular mode of operation, defined by intervals

and probabilities, strictly proportionally to the size of the related “drug-button”.

The specific ways of operation are listed in Table 6:

Targeted Therapy

Mode of Operation Values

(you may assume that the

values between highest and

lowest dosage are roughly

interpolated)

Cyclin-Dependent

Kinase

Inhibitor

Calculated probability (p)

of proliferation

Lowest dosage: p=1

Highest dosage: p=0,25

Immune-Activating

anti_CTLA4 mAB

Calculates interval

duration within which the

probability of attack and

death by the immune

system is calculated

Lowest dosage: duration

= 90 ticks

Highest dosage:

duration= 10 ticks

 23

Telomerase Inhibitor Manipulates Hayflick limit

(the simulations default

value is 5 instead of 50-

70, due to limited

processing power of

current version)

Lowest dosage: limit = 15

divisions

Highest dosage: limit = 1

division

Selective Anti-

Inflammatory Derivative

Slightly decreases

probability of proliferation

Lowest dosage: reduction

= 0,04

Highest dosage: reduction

= 0,06

HGF/c-Met Inhibitor Determines Cell Speed

(v)

Lowest dosage: v = 1

pixel/tick

Highest dosage: v = 0,1

pixel/tick

VEGF Inhibitor Not in use

PARP Inhibitor Calculates probability of

attack and death by

immune system

Lowest dosage: p = 0,01

Highest dosage: p = 0,1

Pro-Apoptotic BH3

Mimetic

Not in use

Aerobic Glycolysis

Inhibitor

Not in use

EGFR Inhibitor Calculates duration of the

interval in which

probability of proliferation

is calculated

Lowest dosage: duration

= 10 ticks

Highest dosage: duration

= 90 ticks

Table 3 Algorithms of Targeted Therapies, Georg, 2016

5.1.2.2.2 The Simulation Process

Every simulation round has a defined starting point, both temporal and local. The

time unit of the simulation is the “tick”, which defines one update loop. 50 ticks in the

simulation equal one day in real time. The duration of one “tick” thereby depends on

 24

the power of the processor, which should usually result in about 50 ticks per second.

One update loop consists of chronologically determined assessment and subsequent

consequences. These conditional links underlie distinct test mechanisms, algorithms,

mainly if-then-instructions, and probability ranges.

So, at the beginning of the simulation, when the program starts, a first cell evolves

containing the characteristics mentioned above, calculated by the initial settings.

In each following tick, the below-mentioned assessment process is performed.

1) If the “Evolution”- Button is set “on”, a countdown, starting at “50”, is

decremented at each tick. If it becomes “0”, a random drug is set at the lowest

dosage or probability, symbolizing randomly acquired resistance to one of the

targeted therapies.

During the period a drug button is muted, the user cannot adjust it manually.

At the end of the time of 50 ticks, the mute is removed, and another random

drug is set to the lowest dosage or probability.

2) Each cell is tested individually concerning divisibility.

First, only cells not evolved in this tick can go through cell division.

Second, the event of a division depends on the current EGFR-Inhibitor related

Interval. Only if the predetermined Interval is expired, so that the value is “0”.

The probability that a division actually occurs is further determined by the

dosage of the Cyclin-Dependent-Kinase-Inhibitor, which is presumed to have

an impact on growth control. The probability ranges between 0.5 and 1. So the

higher the Inhibitor-dosage, the less probable is a cell division. If the Inhibitor-

dosage is set at the lowest, cell division is always successful. A fourth

parameter which influences the probability of cell division is the Selective-Anti-

Inflammatory Derivative.

The higher the Inhibitor dosage, the less probable is the occurrence of

inflammation, the less probable is a cell division. The underlying hypothesis

postulates that tumor-promoting inflammation supports tumor growth by

increasing the cell division rate (Coussens & Werb 2002).

Also, cells can only divide, if the maximum of living cells does not exceed

1800 at the time of testing.

This maximum is chosen to both simulate limited space and resources, as well

as keep the simulation clear and manageable since the power of a

conventional computer is limited.

 25

3) If new cells evolve by the division of mother cells, they receive the

characteristics described above. Thereby, Speed is only attributed to the

newly arisen cells, whereas the rest of the qualities is given to all apparent

cells at the time of testing.

4) The probability of the cell to be attacked by the immune system is calculated.

It depends on the Interval determined by the Immune-Activating anti_CTLA4

mAB and the probability alteration according to the concentration of the PARP

Inhibitor. For the exact probability calculation see paragraph “Immune Attack”.

5) The Hayflick-Limit of the cell is tested. If it is 1, the cell is turned light blue and

will be eliminated at the next division.

6) In the last step, the probability of cell death is calculated. A cell dies, if it either

placed outside of the petri dish, if its Hayflick-Limit counts less than 1, or if the

ticks determined via “Immune Attack” reach 0 ticks.

In the background of the simulation, a list of all living cells is created simultaneously.

In this list, each cell is considered a particular variable or object, which has a given

position, determined by its consecutive appearance, and is saved with its individual

characteristics.

5.1.2.3 Simulating Carcinogenesis based on the “Hallmarks of Cancer”

Since the main aim of a simulation of carcinogenesis and cancer treatment was both

visualization and interactivity, the first approach depicted above was still far too

complex and opaque for visual validation. As a consequence, the treatment option

was eliminated, and instead, cancer growth was simulated taking into account the

impact of the different “Hallmarks” of cancer (Hanahan & Weinberg 2000; Hanahan &

Weinberg 2011). These “Hallmarks” define the phenotypic characteristics found to be

shared by the vast majority of malignant tumors, each resulting from an altered

cellular pathway. This way, the user can influence cell behavior and tumor progress

instantly by adjusting so-called “Hallmark”-Buttons (instead of “Targeted Therapy”-

Buttons) via “+” and “-”, analogously to the handling of the first model focusing on

therapeutic interventions. “+” stands for a greater probability of alteration of the

related pathway, whereas “-” decreases the likelihood of change.

The interface, as well as the central logical mechanisms of the new simulation, are

the same as in the first one, described in detail above (Fig. 12).

 26

Figure 5 Surface of the Simulation of Carcinogenesis I, Georg, Groten, Mertelsmann et al., 2016, Hanahan &
Weinberg 2011

Due to higher transparency and closer resemblance to wet-lab experiments, the

previously developed pseudo-3D-surface of the simulation was altered to a 2D-

visualization, which allows the visibility of every single cell and its behavior (Fig. 13).

Figure 6 Surface of the Simulation of Carcinogenesis II, Georg, Groten, Mertelsmann et al., 2016

 27

The full simulation model is provided via http://mertelsmann.psiori.com/. In this

current version, spectral colors are programmed but do not show high contrast.

The process of cell rise and division stays the same. Each evolving cell is equipped

with the six characteristics as mentioned above. But, instead of the “Drug”-Buttons

applied in the first simulation, “Hallmark”-Buttons influence these features and the

resulting cell behavior and tumor growth. For further detail, see Table 7.

“Hallmarks of Cancer” (Hanahan &

Weinberg 2000; Hanahan & Weinberg

2011)

Evading Growth Suppressors

Avoiding Immune Destruction

Enabling Replicative Immortality

Tumor-Promoting Inflammation

Activating Invasion and Metastasis

Inducing Angiogenesis

Genome Instability and Mutation

Resisting Cell Death

Reprogramming Cellular Energetics

Stimulating Proliferative Signaling

Table 4 “Hallmarks of Cancer”, Hanahan & Weinberg 2000,
Hanahan & Weinberg 2011)

The former called “Evolution”-Button, is renamed “Mutation”-Button to achieve a

more accurate depiction of the adjusted process, but works in the same way.

Moreover, an additional “Entropy”-Button, which can be switched “on” and “off”,

allows the simulation of the development of a progressively malignant tumor with

increasing amount of mutated pathways over time. Maximally three pathways can be

mutated at once. If a fourth pathway is mutated, the earlier one is ignored. In the last

version (Figure 12) this feature was abandoned because it limited the modes of

action concerning probability and chance in carcinogenesis.

5.1.2.3.1 Logical Background and Programming

 28

The whole simulation is written in JavaScript and executable in every common web

browser. Easel.js is applied as an additional library for visualization purposes.

At the beginning of the simulation, there is an arbitrary number of start cells,

adjustable in code (currently set at 6 to prevent the system from early death because

of the death of the first and only cell), which subsequently divides into two, one new

daughter cell and one renewed parent cell. Each evolving cell in the simulation is

equipped with six different characteristics: Color, Position, Velocity, Direction Vector,

Hayflick-Limit and a Boolean-State of Immune Attack. For each newly built cell, these

components are tested and calculated in a certain chronological order depending on

the intensity of alteration of the cellular pathways. Below, the particular

characteristics are described and the differences compared to the first simulation are

elucidated.

Color

Each pathway is represented by a spectral color value, which is calculated as the

weighted sum of the color values (RGB, vector 3 with values from 0 to 255) of all

pathways, depending on their percentage of mutation (a state between 1 and 5). This

calculated value builds the primary color of a cell. This calculation is inspired by a

work of Weber et al. (Weber et al. 2011).

Further color coding is used for the state “Imminent Apoptosis” (light blue) and the

state of “Immune Attack” (dark gray/red contour).

Position

The simulation interface is defined via a two-dimensional coordinate system. The fist

cells are placed at approximately equal distances from the center point of the visible

part of the coordinate system. The Cell Position of each evolving cell is calculated

taking into account the former position of the parent cell. The new daughter cell will

be placed at a spot around the parent cell, at a random angle in the distance of the

diameter of a cell.

Velocity

The speed of a cell is defined as pixel per tick. It ranges from 0.1 to 1 and depends

on the value of “Activating Invasion and Metastasis”, which increases the capacity to

invade and metastasize. At the starting point, the speed of a cell is 0.5 pixel/tick.

 29

After one tick, the speed of a cell decreases exponentially over time, till it runs

towards zero.

Direction Vector

The Direction Vector is a two-coordinate vector, which determines the direction of cell

movement. It is allocated randomly to every evolving cell and remains unchanged for

the whole lifetime of a cell.

Hayflick-Limit

The Hayflick-Limit defines the number of possible divisions of a cell. It depends on

the length of the chromosomal telomeres, which decreases in a standard cell with

every cell division. In the simulation, the default Hayflick-Limit of a normal stem cell is

72 as an approximation of the realistic number between 50 and 70 (Shay & Wright

2000). Each cell evolving from cell division is assigned the Hayflick-Limit of its

predecessor cell minus 1. If a cell shows a Hayflick-Limit of 1 or less at the time of

testing, it is marked with the color light blue and will die at a Hayflick-Limit of 0 or

less, in accordance to apoptosis.

Immune Attack

Another state, a cell can show, is the state of being recognized and attacked by the

immune system. This state is a Boolean-state. Proposing that once a cell has been

detected as a target cell, it will be eliminated by the immune system, a cell in this

constant state is coded with the color dark gray with a red contour and will be dead

after 40 ticks. The probability of Immune Attack depends on two “Hallmarks”

(Hanahan & Weinberg 2000; Hanahan & Weinberg 2011). First, the intensity of

“Avoiding Immune Destruction” determines the interval and thereby the probability of

testing. The test interval ranges between 90 and ten ticks. Second, the intensity of

“Genome Instability and Mutation” further alters the likelihood of testing with a range

of 1 to 10 %, presuming that the probability of detection by the immune system rises

with the number of mutation.

 30

The “Hallmarks of Cancer” (Hanahan & Weinberg 2000; Hanahan & Weinberg 2011)

“Hallmarks of Cancer”

Mode of Operation Values

(you may assume that the

values between highest and

lowest dosage are roughly

interpolated)

Evading Growth

Suppressors

Calculated probability (p)

of proliferation

Lowest dosage: p=0,25

Highest dosage: p=1

Avoiding Immune

Destruction

Calculates interval

duration within which the

probability of attack and

death by the immune

system is calculated

Lowest dosage: duration

= 10 ticks

Highest dosage:

duration= 90 ticks

Enabling Replicative

Immortality

Manipulates decrease of

the Hayflick-Limit per cell

division (the simulations

default value is 72)

Lowest dosage: decrease

= 0

Highest dosage: decrease

= 1,5

Tumor-Promoting Slightly decreases Lowest dosage: reduction

 31

Inflammation probability of proliferation = 0,06

Highest dosage: reduction

= 0,04

Activating Invasion and

Metastasis

Determines Cell Speed

(v)

Lowest dosage: v = 0,1

pixel/tick

Highest dosage: v = 1

pixel/tick

Inducing Angiogenesis Calculates probability of

death resistance*

Lowest dosage=0

Highest dosage=1

Genome Instability and

Mutation

Calculates probability of

attack and death by

immune system

Lowest dosage: p = 0,1

Highest dosage: p = 0,01

Resisting Cell Death Calculates probability of

death resistance*

Lowest dosage=0

Highest dosage=1

Reprogramming Cellular

Energetics

Calculates probability of

death resistance*

Lowest dosage=0

Highest dosage=1

Stimulating Proliferative

Signaling

Calculates duration of the

interval in which

probability of proliferation

is calculated

Lowest dosage: duration

= 90 ticks

Highest dosage: duration

= 10 ticks

Table 5 Algorithms of the “Hallmarks of Cancer”, Georg, 2016, Hanahan & Weinberg, 2011. *mean value of all
three values is calculated.

An overview over the modes of action and the related interactions is given by the

table in Figure 14:

 32

Figure 7 Overview over the modes of action and interactions of pathways and cell characteristics, Georg, 2016

5.1.2.3.2 The Simulation Process

The Simulation Process is only slightly altered as well, compared to the first model.

Every simulation round has a defined starting point, both temporal and local. The

time unit of the simulation is the “tick”, which defines one update loop. 50 ticks in the

simulation equal one day in real time. The duration of one “tick” thereby depends on

the power of the processor, which should usually result in a number of about 50 ticks

per second. One update loop consists of chronologically determined assessment and

subsequent consequences. These conditional links underlie distinct test

mechanisms, algorithms, mainly if-then-instructions, and probability ranges.

So, at the beginning of the simulation, when the program starts, a first cell evolves

containing the characteristics mentioned above, calculated by the initial settings.

In each following tick, the below-mentioned assessment process is performed.

1) The current size of the pathway buttons is measured, and their proportion of

the entirety of pathway buttons is evaluated. As a result, the core color of the

evolving cell (or cells) is calculated by the proportional summation of the

distinct color values (Weber et al. 2011).

2) If the “Mutation”- Button is set “on”, a countdown, starting at “50”, is

decremented at each tick. If it becomes “0”, a random pathway is set at the

 33

highest dosage or probability, symbolizing randomly acquired mutations of one

of the cellular pathways.

During the period a pathway button is set to the maximum, the user cannot

adjust it manually.

At the end of the time of 50 ticks, the automatically set adjustment is removed,

and another random pathway is fixed at the highest dosage or probability.

In case that the “Entropy”-Button is switched on, pathways, which have

once been altered during the current round of the simulation, which have been

saved in a background list, are considered permanently altered. Maximally

three pathways can be mutated at once. If a fourth pathway is mutated, the

earlier one is ignored. This way, the entirety of occurred alteration is

accumulated over time.

In the latest version of the simulation, this option was abandoned due to the

insufficient validity of the mode of action. It shall be reintroduced at a later

point in time with an adequate algorithm.

3) Each cell is tested individually concerning divisibility.

First, only cells not evolved in this tick can go through cell division.

Second, the event of a division depends on the Interval determined by the

current state of the pathway “Stimulating Proliferative Signaling”. Only if the

predetermined Interval is expired, so that the value is “0”. The probability that

a division occurs, is further determined by the dosage of the ability of a cell to

evade “Growth Suppressors”, which is presumed to have an impact on growth

control. The probability ranges between 0.5 and 1. So the higher the

Probability of Evasion from Growth Suppressors, the more probable is a cell

division. A fourth parameter which influences the probability of cell division is

the “Tumor-Promoting Inflammation”.

The higher the Probability of Inflammation, the more probable is a cell division.

The underlying hypothesis postulates that tumor-promoting inflammation

supports tumor growth by increasing the cell division rate (Hanahan &

Weinberg 2011).

If new cells evolve by the division of mother cells, they are equipped with the

characteristics described above. Thereby, qualities are given to all new cells at

the time of testing according to the currently set parameters, except for the

Hayflick-Limit and the Position, which is predefined by the mother cell.

 34

4) In the new 2D simulation, an improvement technique is applied to avoid cell

stacking and only to permit cell placement where there is free space available.

This technique consists of a collision process, in which it is tested at each tick

if the distance between the centers of two cells has a minimal value of 1.2 x r

with r = radius of a cell. This way every cell is compared to every other cell

existing in the current process (listed in the table of all cells). If two cells do not

fulfill this criterion, the compared cell dies, so that the new cell survives.

This way, cells cannot pile up anymore, only a small percentage of overlap is

permitted. So, by a selective mechanism, in areas with more available space,

i.e. at the edge of the tumor, more cells can grow.

5) The probability of the cell to be attacked by the immune system is calculated.

It depends on the Interval determined by the ability to avoid Immune

Destruction and the probability alteration according to the likelihood of

“Genome Instability and Mutation”. For the exact probability calculation see

paragraph “Immune Attack”.

6) The Hayflick-Limit of the cell is tested. If it is 1, the cell is turned light blue and

will die after the next division.

7) In the last step, the probability of cell death is calculated. A cell is eliminated, if

it either placed outside of the petri dish, if its Hayflick-Limit counts less than 1,

or if the ticks determined via “Immune Attack” reach 0 ticks.

In the background of the simulation, a list of all living cells is created simultaneously.

In this list, each cell is considered a particular object, which has a given position,

determined by its consecutive appearance, and is saved with its specific

characteristics. As a novel feature to improve transparency for a more scientific use,

a “lab report bar” is added to the surface of the simulation, which shows the current

numbers of total cells, current cells, dead cells and the growth rate.

5.1.2.3.3 The Validation Process

To implement the suggested simulation in oncology, a validation of the depicted

processes is inevitable. The Validation Process was approached in two phases.

1) Balancing

The first step proceeded during the development of the simulation via a tool called

“Balancing” (Schell 2015). “Balancing” describes a strategy frequently applied in

 35

Game Design and represents a process of iterative observation, testing and

comparison to literal evidence and subsequent adjustment of the settings of the

simulation, until the resulting processes and developments visually approach the

processes and mechanisms depicted in pertinent literature. This strategy is

preferably pursued by several people from different perspectives (Schell 2015). In

our case, the literal primary basis was the review above by Hanahan and Weinberg

(Hanahan & Weinberg 2011), which was complemented by the present literature

review on carcinogenesis. The iterative “Balancing” was performed by a team of

experts in the fields of Game Design, Information Theory, Cognitive Science, and

Medicine/Oncology.

2) Regression Analysis

The second phase contained a statistical analysis of individual correlations by

computational regression analyses. More precisely, the function for Ridge

Regression was applied (Suthaharan 2016; Pedregosa et. al. 2011).

Since the evolutionary sections of the simulation turned out to be insufficient for this

type of analysis, they were eliminated here.

For the analysis, both the pathways and certain cell characteristics were

parameterized, so that their correlations could be investigated.

After running a pre-loop, every possible combination of one, two and three pathways

was simulated for 6000 ticks, which equals 120 days in real time. For better statistical

power, they were repeated six times each. Thereby, the standard deviations as

fractions of the means were 1.23% for the results of “currentCellMax”, 4.08% for

“allCells”, 5.61% and “ImmuneAttacked”. Detailed standard deviation values are

provided in Table 13 in the Appendix. Every simulation round started with six stem

cells. All pathways were set to an average level, the pathways to be altered were set

to the maximum level. During the simulation, the parameterized cell characteristics

were measured at pre-defined points in time. Using this approach, 175 possibilities

plus one standard constellation were tested, six times each so that 1050 experiments

were performed. All tests taken together correspond to 365 years in real time.

The results were analyzed utilizing the equation of Ridge Regression (Pedregosa et.

al. 2011). Out of the immense amount of generated data, we focused on the results

concerning the following aspects, considering these to be the most robust

parameters to validate the correctness of the simulation of tumor growth and

 36

proliferation: the maximum number of current cells, the maximum number of all cells

over time, and the maximum number of cells killed by the immune system. All of

these showed both valid results as well as unexpected correlations and outcomes.

The term “unexpected” here means not directly determined by the code.

For manageability purposes, abbreviations were introduced for the pathways

described above. Table 9 gives an overview over these abbreviations.

Abbreviation Pathway

signaling Sustaining Proliferative Signaling

energetics Reprogramming Cellular Energetics

deathresistance Resisting Cell Death

instability Genome Instability and Mutation

angiogenesis Inducing Angiogenesis

metastasis Activating Invasion and Metastasis

inflammation Tumor-Promoting Inflammation

immortality Enabling Replicative Immortality

immune Avoiding Immune Destruction

growth Evading Growth Suppressors

Table 6 Abbreviations of Cellular Pathways, Georg & Lau, 2016

First, we investigated the results of all performed experiments sorted by the

maximum number of simultaneously existing cells at any point of the simulation

round (currentCellsMax). The results can be seen in Figure 15.

 37

Figure 8 Experimental runs sorted by currentCellsMax, Georg & Lau, 2016

The maximum number of current cells for each possible combination, and each

repeat is plotted on the x-axis. Thereby, every bar represents a single experiment,

whereas the color indicates the activation status with white standing for an average

activation level and gray standing for a maximum of activation, for each pathway.

These pathways are plotted on the y-axis. This way, the entirety of all run

experiments is sorted by the maximum number of current cells, ranging from 600

cells on the left to 1703 cells on the right side. One has to mention that the x-axis is

non-linear here, as one unit equals one experiment.

From this diagram, one can already recognize, that the two pathways associated the

most with a high amount of cells, are “signaling”, standing for “Sustaining Proliferative

Signaling”, and “growth”, representing “Evading Growth Suppressors”.

This rather visual evaluation can be further interpreted mathematically via linear

regression. The results can be extracted from Figure 16.

 38

Figure 9 Coefficients in Linear Regression of currentCellsMax, Georg & Lau, 2016

The results from linear regression present the predictive coefficients for the maximum

amount of current cells for each pathway. In other words, it displays the correlation

between the activation, or the expression respectively, of each pathway and the

number of current cells at the end of the simulation. So, a positive coefficient

indicates that the activation of the related pathway increases the probability of a high

number of cells in a population.

While we do not claim correct quantities, the qualitative outcome appears to be in

concordance with expected results based on current clinical and wet-lab literature.

According to the correlation coefficients above, “Sustaining Proliferative Signaling”

and “Evading Growth Suppressors” show by far the most significant positive

correlation. This finding corresponds to the assertion of Hanahan and Weinberg, who

consider “Sustaining Proliferative Signaling” to be “arguably the most fundamental

trait of cancer cells” (Hanahan & Weinberg 2011). The capacity of “Evading Growth

Suppressors”, on the other hand, is closely linked to mutations in tumor suppressor

genes. The fact that mutations in genes like TP53 and APC are highly prevalent in

human cancers has been shown in many studies and indicates the importance of the

 39

cancerous trait to evade growth suppression by alterations of the responsible genes

(Vogelstein et al. 2013; Vogelstein & Kinzler 2015b).

A rather surprising and unexpected result is the large negative coefficient associated

with the characteristic of “metastasis” standing for “Invasion and Metastasis”. At first

sight, it appears counterintuitive that the ability to invade and disseminate, which is

notoriously affiliated with high-grade malignancy and aggressive growth, has an

adverse effect on the maximum number of current cancer cells and related tumor

size. However, since the number of cells in our simulation corresponds to the number

of cells in the primary lesion, with the total number of cancer cells in the whole

organism ignored, this result appreciates in value.

Even though, metastasis might be widely associated with aggressive tumor growth, it

seems plausible at the same time, that a high amount of disseminating cells, which

leave the primary lesion and do not continue to proliferate in the latter, cause either a

steady state of tumor growth or even a lack of proliferating cells and thereby a

decrease in tumor cell number in the primary site. This hypothesis could, for

example, explain the rare, but recognized, case of Cancer of Unknown Primary

(CUP). A CUP is defined as metastatic cancer, without any visible primary lesion.

Sometimes, only minute rests of such a primary lesion can be identified. This process

might become clearer against the background of the phenomenon depicted above. It

might be possible, that at some stages in tumor progression, dissemination and

metastasis present a disadvantage to the primary lesion concerning cell proliferation

of the latter. This assertion can be emphasized by the considerations of Vogelstein,

mentioned in the paragraph “4.3.2 Cancer is an evolutionary disease”. According to

him, dissemination and metastasis can occur at any time in the development of

cancer, even in premalignant phases, and it is not yet understood, if additional

genetic mutations are required for the potential of metastasis (Vogelstein et al. 2013).

The rest of the regression results do not show significantly positive or negative

coefficients, which indicates that their particular impact on the cell population size

can be neglected. Nevertheless, in certain combinations, these coefficients can show

secondary importance. The importance of the interrelationship of other parameters

can be extracted from an additional analysis of the data above, split into four ranges

of currentCellsMax, oriented to the distribution of the number of experiments, which

resulted in the different cell amounts (Fig. 17).

 40

Figure 10 Splitting the data into four ranges, currentCellsMax, Geoerg & Lau, 2016

In the data depicted above, one can distinguish four ranges: 800 cells, 800-1200

cells, 1200 to 1500 cells and 1500 cells.

Via classification of the coefficients resulting from regression analysis in the different

fields one can notice the impact of the three most significant pathways, both with

positive and negative effect on cell population size.

Figure 11 Coefficients for classifying the range, responsible for range in [-inf, 800.00), Georg & Lau, 2016

 41

Figure 12 Coefficients for classifying the range, responsible for range in [800.00, 1200.00), Georg & Lau, 2016

Figure 13 Coefficients for classifying the range, responsible for range in [1200.00, 1500.00), Georg & Lau, 2016

Figure 14 Coefficients for classifying the range, responsible for range in [1500.00, inf), Georg & Lau, 2016

While “signaling” and “growth” decrease the probability of small population size (

800 cells), metastasis is found to have a positive impact on a small population size

(Fig. 18). This distribution changes with increasing population sizes. To achieve

population sizes from 800 to 1200 cells, all three pathways have to be switched off,

as their coefficients are highly negative (Fig. 19). While the impact on the population

size stays negative in bigger cell counts (1200 cells) for “metastasis”, the influence

 42

of “signaling” and “growth” is highly positive in these population sizes, which

underlines the findings elucidated above (Fig. 20).

Linear regression of the fourth range, 1500 cells, shows additional results

concerning the importance of co-pathways in between the group of high cell counts

(Fig. 21).

As Figure 22 indicates, in between the group of high cell counts, “inflammation” and

“immortality” have a positive effect on increased population sizes. This means, that in

addition to the factors “signaling” and “growth”, extracted from the main analysis,

“inflammation” and “immortality” raise the probability of high cell counts in the range

of 1500 cells.

Figure 15 Coefficients in Linear Regression of currentCellsMax for values in [1500.00, inf), Georg & Lau, 2016

As a consequence, the question of intermediate steps and the formation process of

the results elucidated above, need to be addressed.

Even though the current analysis does not provide direct evidence of the course of

the simulation, data can be extracted indirectly by evaluating the maximum number

of total cells (“allCells”) in each experiment and the number of cells killed by the

immune system (“immuneAttacked”).

 43

Figure 16 Experimental runs sorted by allCells, Georg & Lau, 2016

In Figure 23, all experimental runs are ordered due to the maximum number of all

cells, which have ever evolved during one experiment.

Thereby, the x-axis is non-linear, since one unit equals one experiment. Still, it shows

the number of cells ranging from 31165 cells to 684063 cells.

Comparing these figures to the results of the maximum number of current cells, it

becomes apparent, that the number of ever existing cells in one experiment is about

600-fold higher than the number of cells existing at once. These findings indicate,

that proportionally to the number of evolving cells, independently from the actual

number, cells die at the same time, or leave the primary tumor and metastasize,

respectively.

 44

Figure 17 Coefficients in Linear Regression of allCells, Georg & Lau, 2016

Linear Regression of the experimental runs concerning “allCells” shows results

similar to the results in “currentCellsMax”. However, what is remarkable here, is the

fact that apart from “signaling” and “growth”, which are also highly positively

correlated to a high number of current cells, “inflammation” and “immortality” show

positive correlations, which corresponds to the findings after range division (Fig. 24).

One possible way of a cell to die is to be attacked by the immune system.

The number of cells, which are attacked by the immune system in each experiment is

represented by the value “immuneAttacked”.

 45

Figure 18 Experimental runs sorted by immuneAttacked, Georg & Lau, 2016

Figure 25 above shows all experimental runs sorted by the number of cells, which

have been attacked by the immune system. The x-axis is non-linear here because

one unit equals one experiment. Nevertheless, the x-axis shows the number of cells

attacked by the immune system ranging from 0 cells to 8979 cells.

Figure 19 Coefficients in Linear Regression of immuneAttacked, Georg & Lau, 2016

 46

Linear Regression of the results concerning the number of cells attacked by the

immune system indicates, that both “instability”, standing for Genome Instability and

Mutation, and “immortality”, standing for “Enabling Replicative Immortality, have a

positive impact on a cell’s probability to be attacked by the immune system, while

“signaling”, “metastasis” and “immune”, meaning Avoiding Immune Destruction, are

negatively correlated. In light of the fact that both “Genome Instability and Mutation”

and “Enabling Replicative Immortality”, despite short telomeres, cause chromosomes

with high amounts of genetic failure and defects, it seems plausible, that these

features increase the probability of the altered cell to be detected as foreign and

eliminated in the subsequent (Fig. 26).

The protective effect of “Avoiding Immune Destruction” is evident. Moreover, the

negative correlation with metastasis can be explained by the fact that cells leaving

the dish are counted as dead and thereby cannot be attacked by the immune system

anymore, even though they could be targeted in a real organism. The adverse effects

of Sustaining Proliferative Signaling, on the other hand, remain unclear. One possible

explanation might be a net effect because compared to the rising number of

proliferating cells, the immune system kills relatively few cells. However, this

phenomenon needs to be further examined.

5.1.3 Towards Simulating Hematopoiesis and Acute Myeloid Leukemia

The previously underestimated amount of undetermined and unexpected events

occurring in the first two simulations led us to proceed to a hematopoiesis model. In

hematopoiesis, normal tissue homeostasis could be modeled more easily and cells

leaving the primary site (the bone marrow) were expected to produce realistic and

applicable experiments and results. These results could be validated against known

clinical parameters: peripheral blood counts, hematopoietic growth factor effects, and

bone marrow cellularity under normal conditions and after leukemic transformation.

To increase validity and transparency, we decided to focus on three specific cell

types, erythrocytes, granulocytes and thrombocytes, and their multipotent or lineage-

restricted progenitor cells. We chose myelopoiesis and the related pathologic

alterations because they belong to the best known and investigated processes of cell

evolution and diseases resulting from dysregulation of these processes, such as

aplastic anemia or acute myeloid leukemia (Doulatov et al. 2012). The great

 47

evidence of these processes is used to program a simulation as close as possible to

real biological and clinical processes, by the application of data extracted from

published experiments and studies.

5.1.3.1 Establishing Physiological Hematopoiesis after Transplantation: Tissue

Homeostasis

5.1.3.1.1 Biological Background

Blood cells consist of two different cell lineages, lymphoid and myeloid. While the

lymphoid lineage contains T-, B- and NK-cells, acting both in the adaptive and the

innate immune system, the myeloid cell branch produces granulocytes, like

neutrophils, eosinophils, mast cells and basophils, monocytes, erythrocytes and

megakaryocytes (Doulatov et al. 2012). As fully differentiated blood cells are mainly

short-lived and undergo continuous turnover, establishment and maintenance of the

blood system has to be provided by hematopoietic stem cells (HSCs). In adult

mammals, small numbers of HSCs normally stay in the bone marrow and are

responsible for replenishing multi-lineage progenitor and precursor cells to maintain

the number of circulating blood cells (Orkin & Zon 2008). The exact number of HSCs

actively participating in hematopoiesis at a given time point is not known, but it is

estimated to be around 400 cells. It has been shown that about 116 stem cells are

involved in the maintenance of hematopoiesis after bone marrow transplantation

(Peixoto et al. 2011). Normally, stem cells divide slowly and are capable of self-

renewal. Among HSCs “active” stem cells can be distinguished from “reserve

compartment” cells. While “active” cells divide and contribute to hematopoiesis, the

“reserve” cells remain dormant and inactive. Previous studies have shown that the

stem cell division is asymmetrical, with each division resulting in one daughter cell,

which stays in the HSC niche with the capability of self-renewal, and one daughter

cell, which enters the pathway to differentiation (Peixoto et al. 2011).

The process of differentiation of hematopoietic cells is described as a hierarchical

tree system (Fig. 27). First, HSCs give rise to multipotent progenitor cells of the two

main lineages, myeloid (CMP) and lymphoid (MLP/CLP). These cells then divide into

precursor cells devoted to one single or multiple determined pathways to then fully

differentiated mature cells (Manesso et al. 2013). In the myeloid branch, CMPs

produce GMPs, which result in granulocytes or monocytes, and MEPs, which give

 48

rise to erythroid and megakaryocyte cells. In the lymphoid lineage, CLPs produce B-

cell precursor cells and earliest thymic progenitors (ETPs), which are destined to

develop into T- and NK-cells (Doulatov et al. 2012).

Figure 20 Hierarchical tree system of hematopoiesis, Hematopoiesis: A Human Perspective, Doulatov et al., 2012

The whole path of differentiation is assumed to be a unidirectional lineage

specification process resulting from a series of irreversible decisions towards

increasingly differentiated states with on the other hand decreasing potential for self-

renewal and multipotentiality (Manesso et al. 2013).

The molecular mechanisms regulating this differentiation hierarchy are not yet

completely understood. Many findings indicate that it is based on a plethora of direct

and indirect interactions between cytokines, growth factors, transcription factors and

feedback mechanisms as well as epigenetic mechanisms. The microenvironment of

the HSC, the HSC niche is assumed to play a pivotal role in the specification process

(Orkin & Zon 2008). To provide an overview, some of the most important

transcription factors involved in hematopoietic differentiation are depicted in Figure

28.

 49

Figure 21 Critical transcription factors for blood development, Hematopoiesis: An Evolving Paradigm for Stem Cell
Biology, Orkin & Zon, 2008

5.1.3.1.2 Logical Background and Programming

The first prototypes of the simulation were programmed in pure Python because of its

ability to easily change and adapt the code. While the first complete and interactive

version was written in Java, an improved simulation in Python, embeddable into a

web-service with Bokeh, was written to combine interactivity and the possibility of fast

repetitive simulations with different settings.

As mentioned above, in this model myelopoiesis in the bone marrow is simulated as

the establishment of hematopoietic tissue after transplantation, as well as its impact

on the peripheral blood composition. Each cell in the bone marrow is simulated

individually with a lot of biological aspects, such as differentiation characteristics or

the potential to undergo different genomic mutations or even apoptosis.

According to data extracted from the literature, the following cell types and their

progenitor cells are considered (Fig. 29):

 50

1) Dormant Stem Cells (cp_1)

a. Capable of self-renewal

b. Low division rate (enabled to divide every five ticks, depending on

need)

2) Long Time Active Stem Cells (cp_2)

a. Capable of self-renewal

3) Short Time Active Stem Cells (cp_3)

a. Division in two higher differentiated daughter cells

4) Multipotent Progenitor Cells (cp_4)

5) Common Myeloid Progenitor Cells (cp_5)

6) Progenitor Cells (5)

a. Myoblasts (gran_1 – gran_5)

b. Megakaryocytes (throm_1 – throm_5)

c. Erythrocyte Progenitor Cells (ery_1 – ery_5)

7) Differentiated Cell Types

a. Granulocytes (32 for each gran_1 progenitor cell)

b. Thrombocytes (300 for each throm_1 progenitor cell)

c. Erythrocytes (32 for each ery_1 progenitor cell)

For transparency purposes, the differentiation process of each cell line has been

reduced to five steps. The number of cell divisions is determined with the aid of an

estimation, as data about the exact biological division rates are controversial.

Figure 22 Cell types considered in the Simulation of Hematopoiesis, Georg, 2016

 51

5.1.3.1.3 The Simulation Process

At the beginning of the simulation, one dormant stem cell divides and the division

cascade of myelopoiesis proceeds depending on the apparent concentration of

transmitters. The term “transmitter” is used here as the integral of stimulating and

inhibitory molecules and mechanisms. The most important stimulators of the three

pathways of myeloid blood cell production studied here are the three most influencing

growth factors, erythropoietin, G-CSF and thrombopoietin.

In the current model, these transmitters are virtual countable values, which are

determined by experimental trial to reach a steady state of normal hematopoiesis.

Transmitters are eliminated for each cell, which leaves the bone marrow and enters

the peripheral blood as a fully differentiated blood cell, whereby one transmitter is

eliminated for one cell. One new transmitter is generated in the bone marrow for

each cell, which dies in the peripheral blood.

In the simulation, the time unit is determined as “tick”, with 1 tick = 1 update loop. In

our simulation 1 tick is defined as 1/10 day so that 10 ticks = 1 day.

In each tick, the following assessment proceededs chronologically.

1) In the first step, it is tested, which cells of the peripheral blood die and how

many new transmitters are generated as a result.

2) All transmitters available in the bone marrow bind to progenitor cells, which lie

on the pathway to the final cell of this transmitter, whereby the probability of

binding increases with the grade of differentiation. More precisely, the binding

likelihood depends on the binding capacity (= space) of a cell, with a

probability distribution inverse to the transmitters required for cell division. The

higher the level of differentiation, the less binding space, and the higher the

binding probability. The process of transmitter binding can take more than one

tick. Depending on the number of bound transmitters, cell division is initiated.

Thereby, the number of transmitters needed to induce cell division equals the

number of possible fully differentiated cells evolving from the current

progenitor cell. As a result, a more differentiated cell requires fewer

transmitters to divide, than a less differentiated cell. All cells at the same level

of differentiation are considered equal in the simulation. They are not depicted

as single variables but as a group of individual items. In other words, cells at

the same level of differentiation bind transmitters randomly, and, as a result,

divide randomly. Nevertheless, in one tick, single cells can be divided, as well

 52

as several cells from the same level, as well as several cells from distinct

differentiation levels.

If the amount of a single transmitter type does not reach the threshold of a

certain cell for a division, all currently attached transmitters are summarized.

The apparent dividable cell is then tested with the sum of all transmitters. If the

sum is high enough to induce cell division, the differentiation type of the

evolving cells depends on the ratio of transmitters. The transmitter with the

largest percentage determines the resulting cell type.

3) For each fully differentiated cell, which is transferred to the peripheral blood, a

transmitter of this type is eliminated. If a cell division does not result in a fully

differentiated cell, the transmitters attached to this cell are released into the

bone marrow and can bind to another cell.

4) Every cell, which does not divide, generally keeps the transmitters attached

independent from the update loop. Only with a probability of 5% per tick, it can

lose all attached transmitters at once.

Storage of cell information

Every item evolving in the simulation, as well as every event, is saved in tables and

objects. For the particular storage tables, see below. The tables of all progenitor cells

and the number of transmitters in the bone marrow change simultaneously so that

only the current state can be examined.

A statistics module attached to the simulation collects all relevant information for

analysis after a complete run.

Progenitor Cells in the Bone Marrow

All progenitor cells existent in the bone marrow are registered as object references in

an array.

Each cell contains its own information about cell type, length of telomeres, telomere

loss at cell division (normally 1), number of attached transmitters, amount of free

transmitter space, next differentiation step (with number and type of required

transmitters), Boolean state of dependence on transmitters and a Boolean state of

being a cancer cell.

 53

Transmitters in the Bone Marrow

Transmitters are registered in two dictionaries (Tab. 9). First, the entirety of all

transmitters (attached and free) and second, the number of free transmitters.

Number of Transmitters per Cell Type

Trans_ery x

trans_gran y

Trans_throm z

Table 7 Exemplary dictionary of the number of transmitters per cell type, Worm, 2016

Peripheral Blood Cells

The number of cells in the peripheral blood is described via the storage of their

determined point of death in a dictionary. When a new cell evolves, the probable

lifetime is calculated by the average extracted from literature data and the Gaussian

Distribution. Depending on the result, a cell is defined as a time of death in ticks and

is added to Table 10, representing the number of dying cells per tick. For the

depiction of all current

cells at tick x, the entirety of cells is summarized, from tick x to tick n.

Table 8 Exemplary dictionary of determined points of death of peripheral blood cells, Worm, 2016

Graphic Depiction

Figure 30 shows the visible surface of the simulation. There are nine different figures.

The figures in the first row represent the state and differentiation process of

erythrocytes. The second row shows the behavior of the granulocytes and the third

row the development of the thrombocytes. In the first column, the number of fully

differentiated cells in the peripheral blood over time is depicted. In the second

column, the corresponding number of total (red) and free (orange) transmitters in the

bone marrow is shown over time. These graphs are built with the precision of 1 dot

Cell/Tick 1 2 … n

Erythrocytes 20 15 … x

Granulocytes 45 30 … y

Thrombocytes 30 55 … z

 54

per tick. In the last column, a bar chart demonstrates the number of progenitor cells

at the distinct differentiation levels at the current state, with higher ciphers standing

for higher differentiation. The fourth row shows three additional charts. On the left

side, there is a description of the number of needed time in milliseconds for each

simulation step. In the middle, the total number of cells in the bone marrow is

represented (red) compared to the number of cells able to divide (orange). On the

right sight, a pie chart gives an overview of the relative distribution of different

progenitor cells in the bone marrow.

Figure 23 Surface of the Simulation of Hematopoiesis, Worm, 2016. The full simulation is provided via hem-
model.psiori.com/hema_simulation.

5.1.3.2 Simulating Leukemogenesis: Acute Myeloid Leukemia

5.1.3.2.1 Biological Background

Acute Myeloid Leukemia (AML) can be described as the abnormal proliferation and

poor differentiation of a clonal population of myeloid stem cells with typical

characteristics, such as clonal expansion and infiltration of the bone marrow, blood

and other tissues with subsequent hematopoietic impairment and bone marrow

deficiencies (De Kouchkovsky & Abdul-Hay 2016; Dohner 2015; Papaemmanuil et al.

2016). It is the most common acute leukemia in adults, forming approximately 80% of

 55

cases in adult patients. The incidence rises with age, ranging from about 1.3 per 100

000 population in patients at 65 years and younger to 12.2 per 100 000 population in

patients older than 65 years (De Kouchkovsky & Abdul-Hay 2016). Even though

acute myeloid malignancies can be ordered into favorable, intermediate and adverse-

risk groups, prognosis widely varies, and mortality is still high (De Kouchkovsky &

Abdul-Hay 2016). AML is considered to be a biologically and clinically heterogeneous

disease since it can evolve by a previous hematological disorder, after a prior therapy

or, most frequently, as a de novo malignancy (De Kouchkovsky & Abdul-Hay 2016).

It can be classified into AML with recurrent genetic abnormalities, AML with

myelodysplasia-related changes, therapy-related AML and AML not otherwise

specified, due to the World Health Organization (WHO) Classification of Tumors of

Hematopoietic and Lymphoid Tissues (Dohner 2015). Recent efforts to define

adequate classifications try to exploit the increasingly apparent molecular

heterogeneity of AML. AML is assumed to develop over time, with an increasing

number of somatically acquired driver mutations, resulting in multiple competing

clones. Recent findings indicate, that a plethora of 5234 driver mutations in 76 genes,

evolving in combinations of two or more in 86 % of tested patients, can be identified

in association with AML (Papaemmanuil et al. 2016). An approach to cluster the most

frequent genetic mutations was performed by Döhner in 2015. In Figure 31, eight

different groups of mutations can be distinguished resulting in the following molecular

pathways.

Acc

ordi

ng

to

our

revi

site

d

hall

ma

1. Proliferative Advantage (upper
left)

2. Transcriptional Deregulation and
impaired hematopoietic
differentiation (center left)

3. Aberrant localization of NPM1
and NPM1-interacting proteins
(lower left)

4. Deregulated RNA processing
(lower right)

5. Impaired chromosome
segregation and transcriptional
regulation (center middle)

6. Deregulation of chromatin
modification (center right)

7. Deregulation of DNA
methylation (upper right)

8. Transcriptional Deregulation and
Impaired Degradation (upper
middle)

Figure 31 Cluster of the most frequent mutations in AML, Acute Myeloid Leukemia, Döhner, 2015

 56

rk concept depicted above, one can assign each molecular pathway to one of the

three major hallmark pathways, Growth/Apoptosis Balance (1), Genetic

Fidelity/Immortality (2-8) and Differentiation Block/Stem Cell Features (2) (Dohner

2015).

5.1.3.2.2 The Simulation Process

To simulate the development of AML, we programmed a new cell type, a cancer cell,

for each differentiation level. They contain an arbitrary combination of up to three

different alterations, independence from the Hayflick-limit (telomere-shortening = 0),

independence from transmitters (transmitter dependence = false) and a block of

differentiation (as the next differentiation step the same cell type is determined). Also,

for statistical reasons, the cancer state is turned ON.

5.1.3.2.3 Exemplary Experiments – Possible Implications

Similar to the validation process of the simulation of carcinogenesis, exemplary

experiments have been simulated in this hematopoietic model.

Aiming to investigate the impact of each of the three proposed pathways of AML,

both as single parameters as well as in the combination of two or three, leukemia has

been simulated in several experimental runs for 10 000 ticks each, which equals 100

days in real time. The three different pathways have been activated in various

sequences, at tick 2000, 5000 and 8000. Every setting has been repeated for five

times. The visual part has been abandoned for these experiments to allow a faster

simulation. In the beginning, 20 runs without any pathway activated have been

documented as a control group. The following graphs are exemplary for all

experimental runs, as the results were homogenous. For each set of experimental

runs, four graphs have been plotted for the granulocyte concentration in the

peripheral blood over time (Fig. 32), the thrombocyte concentration in the peripheral

blood over time (Fig. 33), the erythrocyte concentration in the peripheral blood over

time (Fig. 34) and the total number of cells in the bone marrow over time (Fig.35).

Depicted in the graph are the healthy range in blue, the healthy average in orange

and the mutated average in red.

In the first set of experiments, telomerase activation, which allows cell division

 57

independent from the Hayflick-limit, is applied to one cp_5 progenitor cell at tick

2000. The term cancer is used in the legends to indicate malignant alteration.

Figure 24 Granulocyte concentration per l/10, Tick 2000: cp_5 cell with telomerase activation, Worm, 2016

Figure 25 Thrombocyte concentration per l/10, Tick 2000: cp_5 cell with telomerase activation, Worm, 2016

 58

Figure 26 Erythrocyte concentration per l/10, Tick 2000: cp_5 cell with telomerase activation, Worm, 2016

Figure 27 Total marrow cells, Tick 2000: cp_5 cell with telomerase activation, Worm, 2016

 59

Except for a slightly decreasing number of total marrow cells from tick 2000 onwards,

there is no significant effect visible in the graphs above.

In the second experimental run, a cp_5 cell with telomerase activation was added at

tick 2000 and a cp_5 cell with both telomerase activation and a block of

differentiation at tick 5000.

Figure 28 Granulocyte concentration per l/10, Tick 2000: cp_5 cell with telomerase activation, Tick 5000:
differentiation block, Worm, 2016

 60

Figure 29 Thrombocyte concentration per l/10, Tick 2000: cp_5 cell with telomerase activation, Tick 5000:
differentiation block, Worm, 2016

Figure 30 Erythrocyte concentration per l/10, Tick 2000: cp_5 cell with telomerase activation, Tick 5000:
differentiation block, Worm, 2016

 61

Figure 31 Total marrow cells, Tick 2000: cp_5 cell with telomerase activation, Tick 5000: differentiation block,
Worm, 2016

Still, there is no obvious effect visible (Fig. 36 – 38), except for a lower cell count in the bone

marrow from tick 2000 onwards (Fig.39).

In the last set of experimental runs, a cp_5 cell with a telomerase activation was added at

tick 2000, a cp_5 cell with both a telomerase activation and a block of differentiation at tick

5000 and a cp_5 cell with a telomerase activation, a block of differentiation and transmitter

independence at tick 8000.

 62

Figure 32 Granulocyte concentration per l/10, Tick 2000: cp_5 cell with telomerase activation, Tick 5000:
differentiation block, Tick 8000: transmitter-independent division, Worm, 2016

Figure 33 Thrombocyte concentration per l/10, Tick 2000: cp_5 cell with telomerase activation, Tick 5000:
differentiation block, Tick 8000: transmitter-independent division, Worm, 2016

 63

Figure 34 Erythrocyte concentration per l/10, Tick 2000: cp_5 cell with telomerase activation, Tick 5000:
differentiation block, Tick 8000: transmitter-independent division, Worm, 2016

Figure 35 Total marrow cells, Tick 2000: cp_5 cell with telomerase activation, Tick 5000: differentiation block, Tick
8000: transmitter-independent division, Worm, 2016

 64

In contrast to the first two sets of experimental runs, here a significant effect can be found

shortly after tick 8000. While the concentrations of granulocytes, thrombocytes and

erythrocytes decrease dramatically (Fig. 40 – 42), the total number of cells in the bone

marrow increases significantly (Fig. 43). These findings correspond to the clinical course of

AML and its effects on the bone marrow. While other tested orders showed similar results,

one combination provided unexpected effects. In the set of experimental runs with a cp_5

cell with transmitter independent cell division at tick 2000 and an additional block of

differentiation at tick 5000, the following effects were observed.

Figure 36 Granulocyte concentration per l/10, Tick 2000: cp_5 cell with transmitter-independent division, Tick
5000: differentiation block, Worm, 2016

 65

Figure 37 Thrombocyte concentration per l/10, Tick 2000: cp_5 cell with transmitter-independent division, Tick
5000: differentiation block, Worm, 2016

Figure 38 Erythrocyte concentration per l/10, Tick 2000: cp_5 cell with transmitter-independent division, Tick
5000: differentiation block, Worm, 2016

 66

Figure 39 Total marrow cells, Tick 2000: cp_5 cell with transmitter-independent division, Tick 5000: differentiation
block, Worm, 2016

While a low effect was seen after tick 2000, after the addition of a differentiation block at tick

5000, concentrations of granulocytes, thrombocytes and erythrocytes decreased extensively

(Fig. 44 – 46), while the total number of bone marrow cells increased (Fig. 47). However, in

contrast to the findings from the sets with the introduction of three alterations, all values

seem to recover at tick 7000 to worsen again at tick 8000 (Fig. 44 – 47). While the exact

mode of action remains unknown here, the effect of the addition of the differentiation block is

remarkable. Still, the system shows an oscillating behavior instead of the picture of a full-

blown AML, like in the sets with three different alterations.

In conclusion, our experiments indicate, that, except for the surprising outcome elucidated

above, there are always three alterations necessary to initiate a highly malignant AML.

However, the block of differentiation seems to play the most crucial role, as it already shows

an effect, when added to transmitter independence.

5.2 The Hallmark Concept Revisited

The simulation models and the performed experiments depicted above to a large

extent confirm the Hallmark concept extracted and synthesized from the literature

review. Furthermore, our findings indicate that a reduction similar to the classification

 67

presented by Vogelstein et al. can be reasonable, supplemented by an additional

category for differentiation block and acquisition of stem cell features.

Hanahan &

Weinberg 2011

Vogelstein et al. 2013 Groten et al. 2016 Torrente et al.

2016

 Exp 1 Exp 2 Exp 3 Exp 4

Hallmarks of

Cancer

Core Cellular

Processes

CurrentCell

sMax

(Primary

Tumor)

AllCells ImmuneA

ttacked

Leuke

mia

Genes

overexpressed

in cancer

Evading Growth

Suppressors

Cell survival 1 1 EMR2

Sustaining

Proliferative

Signaling

 2 2 - 2 I PTP4A3 (**)

 RPS6KB1

 RGS1

Tumor-Promoting

Inflammation

 3 4 4 TREM2

 MAP3K12

Evading Immune

Destruction

 4a TDO2

 ANXA11

Enabling

Replicative

Immortality

Genome

maintenance

4b 3 2 II ?

Genome Instability

and Mutation

 1 DDX11

 BLM

 NUDT1

 NUDT1

Activating Invasion

and Metastasis

Cell Fate - 1 - 1 - 1 PTP4A3 (**)

 MMP9

New: Stem Cell

properties, Block

of Differentiation,

MET

 III LEF1

 68

Resisting Cell

Death

 low effect none

Inducing

Angiogenesis

Reprogramming

Energy Metabolism

Table 9 The Hallmark Concept Revisited, 1-4b: Relevance Range after Simulating Carcinogenesis, I-III: Final
Relevance Range after Simulating Hematopoiesis (Synthesis), Hanahan & Weinberg, 2011, Vogelstein et al.,
2013, Groten et al., 2016, Torrente et al., 2016

In Table 11 the hallmarks from Table 3 are compared to the results of the simulated

experiments. The “Hallmarks of Cancer” have been ranged from 1 to 4 (4a and 4b,

respectively) due to their calculated impact on the three different end points,

“CurrentCellsMax”, “AllCells” and “ImmuneAttacked”, explained in detail in the

paragraph “Simulating Carcinogenesis – The Validation Process”. A fourth column

represents the three hallmarks applied in the simulation of hematopoiesis to develop

a state of AML (see paragraph “Simulating Leukemogenesis”).

All three experiments in the simulation of carcinogenesis indicate that the two most

crucial traits for cell growth are “Sustaining Proliferative Signaling” and “Evading

Growth Suppressors”, followed by secondary alterations regarding “Tumor-Promoting

Inflammation” and “Enabling Replicative Immortality”.

More generally speaking, these are the alterations in cellular processes of “Cell

Survival” and “Genome Maintenance”, which dominate cell growth in the simulation

of carcinogenesis. These two major hallmarks were transferred to the simulation of

hematopoiesis. A hallmark presumably missing in the first simulation, as well as the

common concepts of cancer traits, is the lack of differentiation and closely associated

stem cell features of a cancer cell. We did not investigate the separate introduction of

a differentiation blockade in the simulation model of carcinogenesis since aspects of

differentiation were not included there. The model as presented essentially assumes

a block of differentiation by exclusion. This gap becomes evident in the simulation of

cancer in a specific tissue system, here the hematopoietic tissue. Applying the lack of

differentiation to the simulation as a third cellular alteration, one can simulate

leukemogenesis with largely realistic and plausible results. This result corresponds to

the suggestions of Vogelstein et al. (Vogelstein et al. 2013; Vogelstein & Kinzler

2015a) and the distribution of genes found to overexpressed in different cancer types

(Torrente et al. 2016).

 69

6 Discussion

Cancer is still the second-leading cause of death worldwide. Recently, novel

concepts and rethinking of previously published concepts are changing the oncologic

research landscape (Lowy & Collins 2016). To address the rising need for innovative

research approaches (Lowy & Collins 2016) the overall aim of this project was to

investigate the essential phenotypic “hallmarks” of a cancer cell, oriented to the

“hallmarks of cancer” suggested by Hanahan and Weinberg (Hanahan & Weinberg

2000; Hanahan & Weinberg 2011), and extended by findings of pertinent literature

about cancer history, cancer hallmarks, genetic hallmarks, cancer therapy, biological

and somatic evolution, entropy and chance and recent research objectives. Based on

this literature research we developed an in silico simulation model through a hallmark

synthesis and, vice versa revisited the identified characteristics via the modeled

simulation. Aiming for a novel tool for teaching as well as for basic, clinical and

therapeutic research, we thereby focused on visualization and interactivity of the

simulation. Implementing this feature utilizing a simulation model, which bears the

advantage of time as an important measurable parameter, we provide a model,

which extends the investigative breadth of previous analytical models. Certainly,

other simulation models have been developed in cancer research, for example, to

simulate targeted therapies (Komarova & Wodarz 2016) or to investigate the

correlation between spatial cancer cell expansion and tumor morphology (Waclaw,

Bozic, Pittman, Hruban, Vogelstein, et al. 2015). In comparison to our model, the

simulation models of targeted therapy provide small amounts of variable parameters,

which are independent of each other and therefore need extensive mathematical

descriptions and rules. Complex probability calculations have to be performed to

achieve the desired simulation. Even though these simulations might appear more

complex and elaborated, they do not allow the investigation of a high amount of

parameters, nor end points. Especially, the possibility to investigate interactions of

parameters is restricted. In contrast, in our model the true values of parameters result

from the simulated dynamic processes and interactions, which are possible because

of the simulation of single pathways by algorithms iteratively adapted during the

simulation process. Additionally, both models mentioned above do not provide the

possibility to interact simultaneously and adjust the simulation via a user-friendly

 70

surface, which is enabled by both of our simulations, which contain interactive

buttons which can be directly adjusted.

Qualitative validity, regarding the resemblance of outcomes to evidence-based

findings, could be shown by extensive Balancing and Regression Analysis with the

aid of a review of pertinent literature. This way, both simulations have shown

considerable coherence and plausibility. Certainly, one could argue, that the

simulation results could mainly be explained as a self-fulfilling prophecy. However,

first, this effect is a sign for inner coherence of a system, in which only single

parameters were defined at the beginning and autonomous interactions are still

possible, and second, we could still observe undetermined and unexpected

outcomes, like the negative impact of “metastasis” on the maximum number of

current cells in the primary tumor in the simulation of carcinogenesis.

Even though the obvious results already provide a certain qualitative validity, an

additional validation process called system identification is still inevitable to declare

the simulations valid. Therefore, further experiments have to be simulated with higher

numbers of repetition and be compared to new wet-lab experiments. Furthermore,

aiming to apply Machine Learning tools to the simulation, one would also have to

reintegrate an improved probability system with continuous parameters and Gauss

distributions.

As mentioned above, the simulation of carcinogenesis resulted in both confirmations

of obvious evidence as well as so far underappreciated effects. Although the full

validity of the simulation can be doubted for the reasons mentioned above, we would

like to take these results seriously, since the majority can be explained even though

they seem counterintuitive at first sight. Our findings indicate that the ten “Hallmarks”

proposed by Hanahan and Weinberg can be clustered in two different groups,

“Growth/Apoptosis Balance” and “Genetic Fidelity/Immortality”, and that

carcinogenesis requires just one alteration in each pathway group. Modelling

Hematopoiesis finally revealed one missing Hallmark Capability, “Block of

Differentiation”, which we have not specifically addressed in the carcinogenesis

model, which starts at time 0 already with a cancer cell population. After having

reviewed the literature on cancer evolution, we propose to assign this feature to the

broader term “Stem Cell Features”. These findings largely correlate with earlier

suggestions by Vogelstein et al. (Vogelstein et al. 2013; Vogelstein & Kinzler 2015b).

In their earlier work, they assumed cancer cells to contain alterations in the three

 71

core cellular processes “Cell Survival”, “Cell Fate” and “Genomic Maintenance”. Out

of these three processes, two directly correlate to our suggestions (Tab. 11). Their

third proposal, “Cell Fate”, primarily describes the capability of metastasis, which we

would like to extend to “Stem Cell Features”, including the “Block of Differentiation”.

For, this assertion results from our simulations and is, according to recent findings, a

fundamental trait of cancer cells, which is a prerequisite for several other pathways

(Jordan, Craig T. et al. 2006; Gupta et al. 2009). The fact that our simulation of

hematopoiesis depends on three different pathway alterations to result in an overt

AML corresponds to recent suggestions of Vogelstein et al., that three driver

mutations are sufficient to initiate the majority of malignancies (Vogelstein & Kinzler

2015b).

In conclusion, we believe to have developed two simulation models, which both

confirm previous assertions as well as provide novel unexpected and possibly

underestimated findings, including a new hallmark classification proposal, and should

be increasingly considered in prospective cancer research.

In combination with Machine Learning tools, autonomous self-learning systems, our

simulations promise to contribute to a novel type of evidence and hypothesis

generation in cancer research with full exploitation of computational power. The

possibly enormous impact of such an approach on the current oncologic research

landscape clearly merits an intensive evaluation of tools of artificial intelligence to

better understand the process of carcinogenesis. Given such a powerful tool to

investigate multi-parametric processes in time-lapse experiments, one might no

longer be able to justify a reductionist approach, which might not be sufficient when it

comes to individual human beings. Once having developed valid tools to evaluate big

data, one should take a step back to clinical trials and redefine the necessary amount

of data, which has to be collected to investigate these processes with the maximum

efficiency. The same applies to the widely spread assertion that EBM is the best way

to address huge amounts of data. In contrast, PM might be the better way here

(Sugarman 2012b), enabled by encompassing simulation models to clinical

challenges. Furthermore, in light of our final synthesis of hallmark capabilities, as well

the ability to investigate processes and alterations at any arbitrary point in time and

therefore observe a sequence of events via a simulation, one can also doubt the

common end points in current cancer research. These endpoints, usually, mainly

focus on remission induction and treatment-free survival. However, in light of recent

 72

findings like the “evolutionary double-bind” (Willyard 2016), it might be more

reasonable to define new end points with respect to possibilities like living with

cancer, i.e. overall survival irrespective of remission rates.

 73

7 Summary

The overall aim of this project was to investigate the fundamental phenotypic traits of

a cancer cell to develop an “in silico” simulation model and, vice versa redefine the

identified characteristics via the established simulation model. Thus, the focus lay on

visualization and interactivity of the simulation. To achieve this aim, we addressed

the following objectives.

First, the essential “Hallmarks of Cancer” have been identified, based on a literature

review (Groten et al., 2016).

As a result, the identified hallmark characteristics were evaluated and, finally,

synthesized. Based on this synthesis, mathematical algorithms were developed to

describe the hallmark pathways of carcinogenesis. Subsequently, a computational

simulation of carcinogenesis has been drawn up employing these mathematical

algorithms. In the next step, the proposed algorithms and correlations have been

tested, validated and adapted through the simulation in several repetitive phases. To

achieve a more reliable and valid simulation, we transferred the novel insights won

from the first simulation to the simulation of processes in specific cell populations

arising in hematopoiesis. This model was used to simulate normal hematopoietic

tissue homeostasis, two clinical scenarios, the establishment of hematopoiesis after

stem cell transplantation, as well as leukemogenesis. As a result, both simulation

models were proved to be qualitatively valid regarding the resemblance of outcomes

to evidence-based findings documented by pertinent literature. Also, both simulation

models presented unexpected, but plausible outcomes, which were not directly

defined by mathematical algorithms, and provide new insight into the probable

process of carcinogenesis. Our findings indicate that the ten “Hallmarks” proposed by

Hanahan and Weinberg can be assigned to two different groups, “Growth/Apoptosis

Balance” and “Genetic Fidelity/Immortality”, and that carcinogenesis requires just one

alteration in each pathway group. Modelling Hematopoiesis finally revealed one

missing Hallmark Capability, “Block of Differentiation”, which we propose to assign to

the broader term “Stem Cell Features”. These findings largely correlate with earlier

suggestions by Vogelstein et al. (Vogelstein et al. 2013; Vogelstein & Kinzler 2015b).

Beyond that, our classification proposal offers a novel and eventually more accurate

perspective of carcinogenesis.

 74

In conclusion, we believe to have developed two simulation models, which both

depict previous assertions as well as provide novel unexpected, hypo generating and

possibly underestimated insights and should be increasingly incorporated into

prospective oncologic research. Certainly, further validation steps will have to be

performed, among other things for quantitative predictability. However, in sight of the

correctness of the basic concept, it promises to contribute to a novel type of evidence

and hypothesis generation in cancer research objectives, especially in future

conjunction with Machine Learning tools, which allow time-lapse experiments,

independent self-learning of a system and, thus, full exploitation of computational

power.

 75

8 References

Alli I (2013) 101 Selected Sayings Mahatma Gandhi,
Almendro V, Marusyk A & Polyak K (2013) Cellular Heterogeneity and Molecular

Evolution in Cancer. Annu. Rev. Pathol. Mech. Dis 8, 277–302.
Alshalalfa M, D. Bader G, Bismar TA, Alhajj R, Martens-Uzunova E, Jalava S, Dits N,

Leenders G, Moller S, Porkka K, Pfeiffer M, Waltering K, Vessella R, Tammela
T, Trang P, Weidhaas J, Slack F, Ozen M, Creighton C, Ozdemir M, Ittmann M,
Srivastava A, Suy S, Collins S, Kumar D, Brase J, Johannes M, Schlomm T,
Falth M, Haese A, Schaefer A, Jung M, Mollenkopf H, Wagner I, Stephan C,
Griffiths-Jones S, Saini H, Dongen S, Enright A, Esquela-Kerscher A, Slack F,
Zhang B, Pan X, Cobb G, Anderson T, Goh W, Oikawa H, Sng J, Sergot M,
Wong L, Sass S, Dietmann S, Burk U, Brabletz S, Lutter D, Hsu C, Juan H,
Huang H, Liang H, Li W, Sualp M, Can T, Xu J, Li C, Lv J, Li Y, Xiao Y,
Schmeier S, Schaefer U, Essack M, Bajic V, Huang J, Babak T, Corson T, Chua
G, Khan S, Zhang W, Edwards A, Fan W, Flemington E, Zhang K, Zhang W,
Edwards A, Fan W, Zhu D, Zhang K, Alter O, Brown P, Botstein D, Varshavsky
R, Gottlieb A, Linial M, Horn D, Ruepp A, Brauner B, Dunger-Kaltenbach I,
Frishman G, Montrone C, Xiao F, Zuo Z, Cai G, Kang S, Gao X, Hsu S, Lin F,
Wu W, Liang C, Huang W, Subramanian A, Tamayo P, Mootha V, Mukherjee S,
Ebert B, Wach S, Nolte E, Szczyrba J, Stohr R, Hartmann A, Blower P, Verducci
J, Lin S, Zhou J, Chung J, Varambally S, Yu J, Laxman B, Rhodes D, Mehra R,
Yu Y, Landsittel D, Jing L, Nelson J, Ren B, Sboner A, Demichelis F, Calza S,
Pawitan Y, Mucci L, Pawitan Y, Bjohle J, Amler L, Borg A, Egyhazi S, Priness I,
Maimon O, Ben-Gal I, Moon Y, Rajagopalan B, Lall U, Sumazin P, Yang X, Chiu
H, Chung W, Iyer A, Huang D, Sherman B, Lempicki R, Ringner M, Fredlund E,
Hakkinen J, Staaf J, Pang Y, Young C, Yuan H, Yang XG, Abbas A, Gupta S,
Lin K, Wang Y, Chen C, Ho C, Su W, Kiviniemi J, Kallajoki M, Kujala I,
Matikainen M, Alanen K, Chen J, Li J, Kiriluk K, Rosen A, Paner G, Ding Z, Wu
C, Chu G, Xiao Y, Ho D, Zhang L, Altuwaijri S, Deng F, Chen L, Lal P, Merico D,
Isserlin R, Stueker O, Emili A & Bader G (2013) Coordinate MicroRNA-Mediated
Regulation of Protein Complexes in Prostate Cancer P. V. Benos, ed. PLoS One
8, e84261.

Batut B, Parsons DP, Fischer S, Beslon G, Knibbe C, McCutcheon J, Moran N,
Moran N, McCutcheon J, Nakabachi A, Moran N, McLaughlin H, Sorek R,
Giovannoni S, Tripp H, Givan S, Podar M, Vergin K, Baptista D, Bibbs L, Eads J,
Richardson T, Noordewier M, Rappé M, Short J, Carrington J, Mathur E, Rocap
G, Larimer F, Lamerdin J, Malfatti S, Chain P, Ahlgren N, Arellano A, Coleman
M, Hauser L, Hess W, Johnson Z, Land M, Lindell D, Post A, Regala W, Shah
M, Shaw S, Steglich C, Sullivan M, Ting C, Tolonen A, Webb E, Zinser E,
Chisholm S, Partensky F, Garczarek L, Yu T, Li J, Yang Y, Qi L, Chen B, Zhao
F, Bao Q, Wu J, Luo H, Friedman R, Tang J, Hughes A, Hindré T, Knibbe C,
Beslon G, Schneider D, Nilsson A, Koskiniemi S, Eriksson S, Kugelberg E,
Hinton J, Andersson D, Barrick J, Yu D, Yoon S, Jeong H, Oh T, Schneider D,
Lenski R, Kim J, Adami C, Mozhayskiy V, Tagkopoulos I, Parsons D, Knibbe C,
Beslon G, Misevic D, Frénoy A, Parsons D, Taddei F, Frénoy A, Taddei F,
Misevic D, Beslon G, Parsons D, Sanchez-Dehesa Y, Peña J-M, Knibbe C,
Cuypers T, Hogeweg P, Lenski R, Ofria C, Collier T, Adami C, Wilke C, Wang J,
Ofria C, Lenski R, Adami C, Lynch M, Conery J, Kuo C-H, Moran N, Ochman H,
Mira A, Moran N, Partensky F, Hess W, Vaulot D, Knibbe C, Coulon A, Mazet O,

 76

Fayard J-M, Beslon G, Daubin V, Moran N, Mira A, Ochman H, Moran N, Moran
N, Plague G, Knibbe C, Mazet O, Chaudier F, Fayard J-M & Beslon G (2013) In
silico experimental evolution: a tool to test evolutionary scenarios. BMC
Bioinformatics 14, S11.

Beerenwinkel N, Schwarz RF, Gerstung M & Markowetz F (2015) Cancer evolution:
mathematical models and computational inference. Syst. Biol. 64, e1-25.

Blokh D & Stambler I (2016) The application of information theory for the research of
aging and aging-related diseases. Prog. Neurobiol.

Blokh D, Stambler I, Afrimzon E, Shafran Y, Korech E, Sandbank J, Orda R, Zurgil N,
Deutsch M, Floyd CE, Yun AJ, Sullivan D, Kornguth P, Furundzic D, Djordjevic
M, Bekic AJ, Pendharkar PC, Roger JA, Yaverbaum GJ, Herman N, Benner M,
Wolberg WH, Mangasarian OL, Mangasarian OL, Street WN, Wolberg WH, Tou
JT, Gonzalez RC, Verhayen CJDM, Duin RPW, Groen FCA, Joosen JC,
Verbeek PW, Gelfand IM, Rosenfeld BI, Shifrin MA, Nieddu L, Patrizi G, Ben-
Ze’ev A, Bershadsky AD, Geiger B, Rosen D, Berke G, Sunray M, Zurgil N,
Shafran Y, Deutsch M, Eisenthal R, Cornish-Bowden A, Tinoco I, Sauer K,
Wang JC, Puglisi JD, Yourno J, Burkart P, Lizzi F, Tartaglia A, Elghetany MT,
Feng JM, Wu JS, Compagnoni AT, Chen WF, Neubauer A, Valet G, Huhn D,
Zschunke F, Salmassi A, Kriepe H, Parwaresch MR, Radzun HJ, Battiti R, Kwak
N, Choi CH, Tourassi GD, Frederick ED, Floyd CE, Lucas PJ, Abu-Hanna A,
Podgorelec V, Kokol P, Stiglic B, Rozman I, Adam BL, Qu Y, Davis JW, Ward
MD, Clements MA, Cazares LH, al. et, Jerez-Aragonez JM, Gomez-Ruiz JA,
Ramos-Jimenez G, Munoz-Perez J, Alba-Conejo E, Kao JPY, Rosen GM, Blokh
D, Afrimzon E, Stambler I, Korech E, Shafran Y, Zurgil N, al. et, Chou WC,
Neifeld MA, Xuan R, Zvarova J, Studeny M, Khinchin AI, Cover TM, Thomas JA,
Shannon CE, Nicolis G, Prigogine I, Fraser AM, Swinney HL, Hill DLG, Batchelor
PG, Holden M, Hawkes DJ, Quinlan JR, Blokh AS, Shalyto AA, Head JF, Elliott
RL, McCoy JL, Wiltschke C, Krainer M, Budinsky AC, Berger A, Muller C,
Zeillinger R, al. et, Schwartz RH, Watson JV, Dive C, Bruheim P, Eimhjellen K,
Zurgil N, Shafran Y, Fixler D, Deutsch M, Eisenthal A, Marder O, Dotan D, Baron
S, Lifschitz-Mercer B, Chaitchik S, al. et, Kaplan MR, Trubnikov E, Berke G,
Babcock DF, Malin-Berdel J, Valet G, Deutsch M, Kaufman M, Shapiro H, Zurgil
N, Chen TL, Passos-Coelho JL, Noe DA, Kennedy MJ, Black KC, Colvin OM, al.
et, Katz-Brull R, Seger D, Rivenson-Segal D, Rushkin E, Degani H, Greaves MF
& Bauminger S (2007) The information-theory analysis of Michaelis-Menten
constants for detection of breast cancer. Cancer Detect. Prev. 31, 489–98.

Bundesamt S (2014) Todesursachen in Deutschland. Stat. Bundesamt 12.
Cairns J (1975) Mutation selection and the natural history of cancer. Nature 255, cp1-

.
De Carvalho DD, Sharma S, You JS, Su S-F, Taberlay PC, Kelly TK, Yang X, Liang

G & Jones PA (2012) DNA Methylation Screening Identifies Driver Epigenetic
Events of Cancer Cell Survival. Cancer Cell 21, 655–667.

Coussens LM & Werb Z (2002) Inflammation and Cancer. Nature.
Deutsches Krebsforschungszentrum (2016) Zahlen und Fakten - Deutsches

Krebsforschungszentrum. Available at: https://www.dkfz.de/de/dkfz/quick-
facts.html [Accessed October 4, 2016].

Dohner H (2015) Acute Myeloid Leukemia. N. Engl. J. Med. 373, 1136–52.
Doulatov S, Notta F, Laurenti E & Dick JE (2012) Hematopoiesis: A human

perspective. Cell Stem Cell 10, 120–136.
Ernest Belfort Bax (1786) The Metaphysical Foundations of Natural Science,

 77

Fan R, Zhong M, Wang S, Zhang Y, Andrew A, Karagas M, Chen H, Amos CI, Xiong
M & Moore JH (2011) Entropy-based information gain approaches to detect and
to characterize gene-gene and gene-environment interactions/correlations of
complex diseases. Genet. Epidemiol. 35, 706–21.

Greaves M & Maley CC (2012) Clonal evolution in cancer. Nature 481, 306–313.
Groten J, Borner C, Mertelsmann R (2016) Understanding and Controlling Cancer:

The Hallmark Concept Revisited - Evolution and Entropy
Gupta PB, Chaffer CL & Weinberg RA (2009) Cancer stem cells: mirage or reality?
Hanahan D & Weinberg RA (2011) Hallmarks of Cancer: The Next Generation. Cell

144, 646–674.
Hanahan D & Weinberg RA (2000) The Hallmarks of Cancer. Cell 100, 57–70.
Hayes DN & Kim WY (2015) The next steps in next-gen sequencing of cancer

genomes. J. Clin. Invest. 125, 462–468.
IARC (2016a) About IARC - IARC History. Available at:

https://www.iarc.fr/en/about/iarc-history.php [Accessed October 4, 2016].
IARC (2016b) Globocan 2012. Http://Www-Dep.Iarc.Fr/ GLOBOCAN, 2012–2013.
Jordan, Craig T. PD, Guzman, Monica L. PD & Noble, Mark PD (2006) Cancer Stem

Cells. N. Engl. J. Med. 355, 1253–61.
Justesen N, Mahlmann T & Togelius J Online Evolution for Multi-Action Adversarial

Games.
Klein CA (2013) Selection and adaptation during metastatic cancer progression.

Nature 501, 365–372.
Komarova NL & Wodarz D (2016) Targeted Cancer Treatment in Silico Small

Molecule Inhibitors and Oncolytic Viruses.
De Kouchkovsky I & Abdul-Hay M (2016) “Acute myeloid leukemia: a comprehensive

review and 2016 update.” Blood Cancer J. 6, e441.
Lowy DR & Collins FS (2016) Aiming High — Changing the Trajectory for Cancer. N.

Engl. J. Med. 374, 1901–1904.
Luzzatto L & Pandolfi PP (2015) Causality and Chance in the Development of

Cancer. N. Engl. J. Med. 1, 84–88.
Mackey MC, Santillán M, Tyran-Kamińska M & Zeron ES (2015) The utility of simple

mathematical models in understanding gene regulatory dynamics. In Silico Biol.
12, 23–53.

Manesso E, Teles J, Bryder D & Peterson C (2013) Dynamical modelling of
haematopoiesis: an integrated view over the system in homeostasis and under
perturbation. J. R. Soc. Interface 10, 20120817.

Merlo LMF, Pepper JW, Reid BJ & Maley CC (2006) Cancer as an evolutionary and
ecological process. Nature 6, 924–935.

Mertelsmann R & Georg M (2016) Cancer : Modeling evolution and natural selection ,
the „ Mitosis Game “.

National Cancer Institute (2016a) National Cancer Act of 1937. Natl. Cancer Inst.
Available at: http://www.cancer.gov/about-nci/legislative/history/national-cancer-
act-1937.

National Cancer Institute (2016b) National Cancer Act of 1971. Natl. Cancer Inst.
Available at: http://www.cancer.gov/about-nci/legislative/history/national-cancer-
act-1971.

Nature (2016) Bioinformatics. Nature. Available at:
http://www.nature.com/subjects/bioinformatics [Accessed July 5, 2016].

Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194, 23–8.
Obama B (2016) Memorandum -- White House Cancer Moonshot Task Force.

 78

Orkin SH & Zon LI (2008) Hematopoiesis: An Evolving Paradigm for Stem Cell
Biology. Cell 132, 631–644.

Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik V, Paschka P, Roberts N, Potter
N, Heuser M, Thol F, Bolli N, Gundem G, Van, Loo P, Martincorena I, Ganly P,
Mudie L, McLaren S, O’Meara S, Raine K, Jones D, Teague J, Butler A,
Greaves M, Ganser A, Döhner K, Schlenk R, Döhner H & Campbell P (2016)
Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med
in press.

Pedregosa et. al. (2011) Scikit-learn: Machine Learning in Python. JMLR 12, 2825–
2830.

Peixoto D, Dingli D & Pacheco JM (2011) Modelling hematopoiesis in health and
disease. Math. Comput. Model. 53, 1546–1557.

Pelossof R, Singh I, Yang JL, Weirauch MT, Hughes TR & Leslie CS (2015) Affinity
regression predicts the recognition code of nucleic acid–binding proteins. Nat.
Biotechnol. 33, 1242–1249.

Riedmiller M, Gabel T, Hafner R & Lange S (2009) Reinforcement learning for robot
soccer. Auton. Robots 27, 55–73.

Schell J (2015) The Art of Game Design: A Book of Lenses, Second Edition,
Shay JW & Wright WE (2000) Hayflick, his limit, and cellular ageing. Nat. Rev. Mol.

Cell Biol. 1, 72–76.
Sugarman J (2012a) Questions Concerning the Clinical Translation of Cell-Based

Interventions under an Innovation Pathway. J. Law, Med. Ethics 40, 945–950.
Sugarman J (2012b) Questions concerning the Clinical Translation of Cell-Based

Interventions under an Innovation Pathway. J. Law, Med. Ethics 40.
Suthaharan S (2016) Machine Learning Models and Algorithms for Big Data

Classification, Boston, MA: Springer US.
Sütterlin T (2015) Entwurf und Realisierung eines computergestützten Systems zur in

silico Modellierung und Simulation von Epithelgeweben.
Tomasetti C & Vogelstein B (2015) Variation in cancer risk among tissues can be

explained by the number of stem cell divisions. Science (80-.). 347, 78–81.
Torrente A, Lukk M, Xue V, Parkinson H, Rung J & Brazma A (2016) Identification of

Cancer Related Genes Using a Comprehensive Map of Human Gene
Expression. PLoS One 11, e0157484.

UICC (2014) Introduction to UICC.
Vogelstein B & Kinzler KW (2015a) The Path to Cancer - Three Strikes and You’re

out. N. Engl. J. Med. 37320.
Vogelstein B & Kinzler KW (2015b) The Path to Cancer — Three Strikes and You’re

Out. N. Engl. J. Med. 373, 1895–1898.
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW, Wood

LD, Parsons DW, Jones S, Govindan R, Gryfe R, Gallinger S, Palles C, Nowell
PC, Fearon ER, Vogelstein B, Kinzler KW, Vogelstein B, Jones S, Bozic I,
Tomasetti C, Vogelstein B, Parmigiani G, Laurenti E, Dick JE, Welch JS,
Yachida S, Kerbel RS, Bernards R, Weinberg RA, Yu M, Stott S, Toner M,
Maheswaran S, Haber DA, Komori J, Boone L, DeWard A, Hoppo T, Lagasse E,
Pelizzola M, Ecker JR, Parmigiani G, Meyerson M, Gabriel S, Getz G, Carter H,
Youn A, Simon R, Kaminker JS, Zhang Y, Watanabe C, Zhang Z, Michaelson
JJ, Nik-Zainal S, Thiagalingam S, Forbes SA, Yan H, Zhao S, Ward PS, Dang L,
Pear WS, Aster JC, Nicolas M, Weng AP, Agrawal N, Stransky N, Agrawal N,
Parsons DW, Pasqualucci L, Morin RD, Grasso CS, Ellis MJ, Wiegand KC,
Jones S, Jones S, Wang K, Huang J, Imielinski M, Rudin CM, Delhommeau F,

 79

Schwartzentruber J, Wu G, Ley TJ, Dalgliesh GL, Suvà ML, Riggi N, Bernstein
BE, Papaemmanuil E, Graubert TA, Yoshida K, Jiao Y, Cesare AJ, Reddel RR,
Heaphy CM, Heiden MG Vander, Cantley LC, Thompson CB, Lu C, Turcan S,
Stephens PJ, Bass AJ, Tomlins SA, Soda M, Armitage P, Doll R, Böttcher R,
Forster M, Ding J, Beal MA, Glenn TC, Somers CM, Mertes F, Gundry M, Vijg J,
Biankin A V., Yan H, Kinzler KW, Vogelstein B, Huang FW, Horn S, Xue W,
Solimini NL, Beggs AD, Feinberg AP, Tycko B, Jones PA, Baylin SB, Höglund
M, Gisselsson D, Säll T, Mitelman F, Shibata D, Schaeffer J, Li ZH, Capella G,
Perucho M, Sottoriva A, Spiteri I, Shibata D, Curtis C, Tavaré S, Shah SP,
Anderson K, Navin N, Nik-Zainal S, Gerlinger M, Xu X, Campbell PJ, Wagle N,
Komarova NL, Wodarz D, Turke AB, Durrett R, Moseley S, Diaz LA, Kreso A,
Stephens PJ, Pang H, Chen J, Ye Y, Sun H, Shi G, Chapman PB, Kwak EL,
Ljungman M, Lane DP, Perrimon N, Pitsouli C, Shilo BZ, Kerbel RS, Chung AS,
Ferrara N, Baish JW, Hynes NE, Lane HA, Turner N, Grose R, Yun J, Ying H,
Araten DJ, Kunkel TA, Zhou B-BS, Elledge SJ, Medema RH, Macůrek L,
Derheimer FA, Kastan MB, Ciriello G, Cerami E, Sander C, Schultz N, Yeang
CH, McCormick F, Levine A, Sharma S V., Bell DW, Settleman J, Haber DA,
McLeod HL, Brock DW, Lemmon MA, Schlessinger J, Arkin MR, Wells JA,
Bienstock RJ, Besson A, Dowdy SF, Roberts JM, Morin PJ, He TC, Wetering M
van de, Farmer H, Irshad S, Ashworth A, Tutt A, Grueneberg DA, Mao M,
Kirkwood JM, Barrett T, Segal NH, Castle JC, Sampson JH, Matsushita H,
DuPage M, Mazumdar C, Schmidt LM, Cheung AF, Jacks T, Challa-Malladi M,
Hodi FS, Topalian SL, Dunn BK, Jegalian K, Greenwald P, Lopes LC, Barberato-
Filho S, Costa AC, Osorio-de-Castro CGS, Colditz GA, Wolin KY & Gehlert S
(2013) Cancer genome landscapes. Science 339, 1546–58.

Waclaw B, Bozic I, Pittman ME, Hruban RH, Nowak MA, Guthrie P, Road T, Square
OB, Street OO, Goldman S, Cancer P, Hopkins J, Cancer K & Biology E (2015)
A spatial model predicts that dispersal and cell turnover limit intratumour
heterogeneity. Nature 525, 261–264.

Waclaw B, Bozic I, Pittman ME, Hruban RH, Vogelstein B & Nowak MA (2015) A
spatial model predicts that dispersal and cell turnover limit intratumour
heterogeneity. Nature 525, 261–264.

Walker DC & Southgate J (2009) The virtual cell--a candidate co-ordinator for
“middle-out” modelling of biological systems. Brief. Bioinform. 10, 450–461.

Weber K, Thomaschewski M, Warlich M, Volz T, Cornils K, Niebuhr B, Täger M,
Lütgehetmann M, Pollok J-M, Stocking C, Dandri M, Benten D & Fehse B (2011)
RGB marking facilitates multicolor clonal cell tracking. Nat. Med. 17, 504–509.

WHO (2016a) WHO | Cancer. WHO. Available at:
http://www.who.int/mediacentre/factsheets/fs297/en/ [Accessed June 9, 2016].

WHO (2016b) World Health Statistics 2016: monitoring health for the SDGs,
sustainable development goals. , 1–136.

Willyard C (2016) Cancer : An evolving threat. Nature 532, 166–168.

 80

9 Figures
Figure 1 Blind monks examining an elephant, Hanabusa Itcho,

https://en.wikipedia.org/wiki/Blind_men_and_an_elephant, 2016............................... 7

Figure 5 Short-range dispersal affects size, shape and growth rate of tumors, A

spatial model predicts that dispersal and cell turnover limit intra-tumor heterogeneity,

Waclaw, Bozic, Pittman et al., 2015 ... 16

Figure 6 Surface of the Mitosis Game, Cancer: Modeling evolution and natural

selection, the “Mitosis Game“, Mertelsmann & Georg, 2016 18

Figure 7 Surface of the Simulation of Cancer Therapy, Georg, Groten, Mertelsmann

et al., 2016 ... 19

Figure 8 Surface of the Simulation of Carcinogenesis I, Georg, Groten, Mertelsmann

et al., 2016, Hanahan & Weinberg 2011 ... 26

Figure 9 Surface of the Simulation of Carcinogenesis II, Georg, Groten, Mertelsmann

et al., 2016 .. 26

Figure 10 Overview over the modes of action and interactions of pathways and cell

characteristics, Georg, 2016 ... 32

Figure 11 Experimental runs sorted by currentCellsMax, Georg & Lau, 2016 37

Figure 12 Coefficients in Linear Regression of currentCellsMax, Georg & Lau, 2016

 ... 38

Figure 13 Splitting the data into four ranges, currentCellsMax, Geoerg & Lau, 2016 40

Figure 14 Coefficients for classifying the range, responsible for range in [-inf, 800.00),

Georg & Lau, 2016 ... 40

Figure 15 Coefficients for classifying the range, responsible for range in [800.00,

1200.00), Georg & Lau, 2016 ... 41

Figure 16 Coefficients for classifying the range, responsible for range in [1200.00,

1500.00), Georg & Lau, 2016 ... 41

Figure 17 Coefficients for classifying the range, responsible for range in [1500.00,

inf), Georg & Lau, 2016 .. 41

 81

Figure 18 Coefficients in Linear Regression of currentCellsMax for values in

[1500.00, inf), Georg & Lau, 2016 .. 42

Figure 19 Experimental runs sorted by allCells, Georg & Lau, 2016 43

Figure 20 Coefficients in Linear Regression of allCells, Georg & Lau, 2016 44

Figure 21 Experimental runs sorted by immuneAttacked, Georg & Lau, 2016 45

Figure 22 Coefficients in Linear Regression of immuneAttacked, Georg & Lau, 2016

 ... 45

Figure 23 Hierarchical tree system of hematopoiesis, Hematopoiesis: A Human

Perspective, Doulatov et al., 2012 .. 48

Figure 24 Critical transcription factors for blood development, Hematopoiesis: An

Evolving Paradigm for Stem Cell Biology, Orkin & Zon, 2008 49

Figure 25 Cell types considered in the Simulation of Hematopoiesis, Georg, 2016 . 50

Figure 26 Surface of the Simulation of Hematopoiesis, Worm, 2016. The full

simulation is provided via hem-model.psiori.com/hema_simulation. 54

Figure 27 Granulocyte concentration per l/10, Tick 2000: cp_5 cell with telomerase

activation, Worm, 2016 ... 57

Figure 28 Thrombocyte concentration per l/10, Tick 2000: cp_5 cell with telomerase

activation, Worm, 2016 ... 57

Figure 29 Erythrocyte concentration per l/10, Tick 2000: cp_5 cell with telomerase

activation, Worm, 2016 ... 58

Figure 30 Total marrow cells, Tick 2000: cp_5 cell with telomerase activation, Worm,

2016 ... 58

Figure 31 Granulocyte concentration per l/10, Tick 2000: cp_5 cell with telomerase

activation, Tick 5000: differentiation block, Worm, 2016 ... 59

Figure 32 Thrombocyte concentration per l/10, Tick 2000: cp_5 cell with telomerase

activation, Tick 5000: differentiation block, Worm, 2016 ... 60

Figure 33 Erythrocyte concentration per l/10, Tick 2000: cp_5 cell with telomerase

activation, Tick 5000: differentiation block, Worm, 2016 ... 60

Figure 34 Total marrow cells, Tick 2000: cp_5 cell with telomerase activation, Tick

5000: differentiation block, Worm, 2016 ... 61

Figure 35 Granulocyte concentration per l/10, Tick 2000: cp_5 cell with telomerase

activation, Tick 5000: differentiation block, Tick 8000: transmitter-independent

division, Worm, 2016 .. 62

 82

Figure 36 Thrombocyte concentration per l/10, Tick 2000: cp_5 cell with telomerase

activation, Tick 5000: differentiation block, Tick 8000: transmitter-independent

division, Worm, 2016 .. 62

Figure 37 Erythrocyte concentration per l/10, Tick 2000: cp_5 cell with telomerase

activation, Tick 5000: differentiation block, Tick 8000: transmitter-independent

division, Worm, 2016 .. 63

Figure 38 Total marrow cells, Tick 2000: cp_5 cell with telomerase activation, Tick

5000: differentiation block, Tick 8000: transmitter-independent division, Worm, 2016

 ... 63

Figure 39 Granulocyte concentration per l/10, Tick 2000: cp_5 cell with transmitter-

independent division, Tick 5000: differentiation block, Worm, 2016 64

Figure 40 Thrombocyte concentration per l/10, Tick 2000: cp_5 cell with transmitter-

independent division, Tick 5000: differentiation block, Worm, 2016 65

Figure 41 Erythrocyte concentration per l/10, Tick 2000: cp_5 cell with transmitter-

independent division, Tick 5000: differentiation block, Worm, 2016 65

Figure 42 Total marrow cells, Tick 2000: cp_5 cell with transmitter-independent

division, Tick 5000: differentiation block, Worm, 2016 .. 66

10 Tables

Table 4 “Hallmarks of Evolution” and Environmental Parameters, Cancer: Modeling

evolution and natural selection, the „Mitosis Game“, Mertelsmann & Georg, 2016 .. 17

Table 5 Targeted Therapies and related Cellular Pathways, Georg, Groten,

Mertelsmann et al., 2016, Hanahan & Weinberg, 2011 .. 20

Table 6 Algorithms of Targeted Therapies, Georg, 2016 .. 23

Table 7 “Hallmarks of Cancer”, Hanahan & Weinberg 2000, 27

Table 8 Algorithms of the “Hallmarks of Cancer”, Georg, 2016, Hanahan & Weinberg,

2011. *mean value of all three values is calculated. ... 31

Table 9 Abbreviations of Cellular Pathways, Georg & Lau, 2016 36

Table 10 Exemplary dictionary of the number of transmitters per cell type, Worm,

2016 ... 53

Table 11 Exemplary dictionary of determined points of death of peripheral blood

cells, Worm, 2016 ... 53

 83

Table 12 The Hallmark Concept Revisited, 1-4b: Relevance Range after Simulating

Carcinogenesis, I-III: Final Relevance Range after Simulating Hematopoiesis

(Synthesis), Hanahan & Weinberg, 2011, Vogelstein et al., 2013, Groten et al., 2016,

Torrente et al., 2016 ... 68

Table 13 Standard Deviations as Fraction of Mean (Georg & Lau, 2016) 110

 84

11 Acknowledgements

I would like to thank Prof. em. Dr. Drs. h.c. Roland Mertelsmann and

Prof. Dr. Dr. h.c. Christoph Borner for their intellectual input, stimulating discussions

and constant and friendly encouragement.

Furthermore, I deeply appreciate the professional support, challenging discussions

and the expertise in transforming medical and biological concepts into algorithms and

highly instructive computer-assisted visualizations of Maximilian Georg, Oliver Worm,

Dr. Boris Lau and Dr. Sascha Lange.

I am grateful to Evguenia Alechine for proofreading the manuscript. Last not least I

would like to appreciate the generous scholarship for this project provided by the

Biothera Foundation, Freiburg, Germany.

 85

12 Appendix

12.1 Full Simulation Codes

Full Code Carcinogenesis

(Maximilian Georg & Boris Lau, PSIORI GmbH)

Simulation Commented

(Maximilian Georg & Boris Lau, PSIORI GmbH)

var args = process.argv;

var num_expected_params = 11;

function usage_exit() {

 console.log("Usage: node mitosis_science_batch.js NUMSTEPS P1 P2 p3");

 console.log(" NUMSTEPS: number of steps the simulation is run");

 console.log(" cyclinScaleCount: [0,..,4]");

 console.log(" immuneActScaleCount: [0,..,4]");

 console.log(" teloScaleCount: [0,..,4]");

 console.log(" selectiveScaleCount: [0,..,4]");

 console.log(" hgfScaleCount: [0,..,4]");

 console.log(" vegfScaleCount: [0,..,4]");

 console.log(" parpScaleCount: [0,..,4]");

 console.log(" proapoptoticScaleCount: [0,..,4]");

 console.log(" aerobicScaleCount: [0,..,4]");

 console.log(" egfrScaleCount: [0,..,4]");

 process.exit()

}

if (args.length!= 2+num_expected_params) usage_exit();

//**** PARSE PARAMETERS ****

var num_steps = parseInt(args[2+0]);

if (isNaN(num_steps) || num_steps<0) usage_exit();

/* INIT */

// size is used to adjust the whole simulation to different screen sizes and represents a

number of pixels (this version is without visualisation)

var size = 1200;

// petri dish size

var resultCircleSize = 0.205 * size;

// standard duration of reproduction interval in ticks (30 ticks represent 1 day)

var reproCountdownStart = 30;

// halflick limit for initial cells

var hayflickStart = 72;

// standard value for hayflick reduction after proliferation

var hayflickReductionStart = 1;

// standard value for cell Speed after proliferation (pixels per tick)

var cellSpeedStart = 0.5;

// standard probability for proliferation

var growthChanceStart = 0.5;

// standard probability for avoiding to get attacked by immune system

var immuneAvoidStart = 0.95;

// standard duration of immune attack intervals

var immuneCountdownStart = 30;

// standard time it take will an attacked cell dies

var immuneResistanceStart = 40;

// standard inflammation value (this is used to modify the probability of events which depent

on inflammation)

var inflammationStart = 1;

 86

// standard values for angiogenese, avoiding aproptosis and reprogramming energetics, this

values are used calculated the probability for avoiding cell death

var angioStart = 0.5;

var proapoptoticStart = 0.5;

var aerobicStart = 0.5;

// all tacked output values

var allCells = 0;

var deadCells = 0;

var deadCellsTemp = 0;

var newCellsTemp = 0;

var currentCells = 0;

var overlappingCells = 0;

var hayflickReached = 0;

var immuneAttacked = 0;

var cellChange = 0;

var ccCollect = 0;

var ccCount = 0;

var ccAverage = 0;

var currentCellsMin = Number.POSITIVE_INFINITY;

var currentCellsMax = -1;

var newCellsMin = Number.POSITIVE_INFINITY;

var newCellsMax = -1;

var deadCellsMin = Number.POSITIVE_INFINITY;

var deadCellsMax = -1;

// the emitter stores all imfomation needed to cerate new cells

var emitter = {

 x: 0.5 * size,

 y: 0.286 * size,

 cellSize: 5, //2.8,

 cellColor: "#daf650",

 cellStrokeColor: "#daf650",

 breakCap: 10,

 cellSpeed: 0.2,//0.1,

 reproCountdown: reproCountdownStart,

 hayflick: hayflickStart,

 hayflickReduction: hayflickReductionStart,

 growthChance: growthChanceStart,

 immuneAvoid: immuneAvoidStart,

 immuneCountdown: immuneCountdownStart,

 immuneResistance: immuneResistanceStart,

 inflammation: inflammationStart,

 angio: angioStart,

 proapoptotic: proapoptoticStart,

 aerobic: aerobicStart

};

//**** CONFIGURE VALUES ****

// stubs for unused and thus unimplemented buttons

var evo = {state: 0, inhib: []};

var entro = {state: 0};

//all values according to dossages assigned in batch.js and standard values get calculated

//Cyclin-dependent kinase inhibitors // Evading growth suppressors

var cyclinScaleCount = parseInt(args[2+1]);

if (isNaN(cyclinScaleCount) || cyclinScaleCount<0 || cyclinScaleCount>4) usage_exit();

if (entro.state && evo.inhib.indexOf(0)) emitter.growthChance = growthChanceStart * 2;

else if (evo.state && evo.inhib[evo.inhib.length-1] == 0) emitter.growthChance =

growthChanceStart * 2;

else {

 var factor = [2, 1.5, 1, 0.5, 0.2].reverse();

 emitter.growthChance = growthChanceStart * factor[cyclinScaleCount]

}

//Immune activating anti_CTLA4 mAb // Avoiding immune destruction

var immuneActScaleCount = parseInt(args[2+2]);

if (isNaN(immuneActScaleCount) || immuneActScaleCount<0 || immuneActScaleCount>4)

usage_exit();

if (entro.state && evo.inhib.indexOf(1)) emitter.immuneCountdown = immuneCountdownStart * 3;

else if (evo.state && evo.inhib[evo.inhib.length-1] == 1) emitter.immuneCountdown =

immuneCountdownStart * 3;

else {

 var factor = [3, 1.5, 1, 1/1.5, 1/3.0].reverse();

 87

 emitter.immuneCountdown = immuneCountdownStart * factor[immuneActScaleCount];

}

//Telomerase Inhibitors // Enabling replicative immortality

var teloScaleCount = parseInt(args[2+3]);

if (isNaN(teloScaleCount) || teloScaleCount<0 || teloScaleCount>4) usage_exit();

if (entro.state && evo.inhib.indexOf(2)) emitter.hayflickReduction = 0;

else if (evo.state && evo.inhib[evo.inhib.length-1] == 2) emitter.hayflickReduction = 0;

else {

 var values = [0, 0.5, hayflickReductionStart, 1.25, 1.5].reverse();

 emitter.hayflickReduction = values[teloScaleCount];

}

// Tumor - promoting inflammation

var selectiveScaleCount = parseInt(args[2+4]);

if (isNaN(selectiveScaleCount) || selectiveScaleCount<0 || selectiveScaleCount>4)

usage_exit();

if (entro.state && evo.inhib.indexOf(3)) emitter.inflammation = inflammationStart - 0.2;

else if (evo.state && evo.inhib[evo.inhib.length-1] == 3) emitter.inflammation =

inflammationStart - 0.2;

else {

 var offset = [-0.2, -0.1, 0, 0.1, 0.2];

 emitter.inflammation = inflammationStart + offset[selectiveScaleCount];

}

//Inhibitors of HGF/c-Met // Activating invasion & metastasis

var hgfScaleCount = parseInt(args[2+5]);

if (isNaN(hgfScaleCount) || hgfScaleCount<0 || hgfScaleCount>4) usage_exit();

if (entro.state && evo.inhib.indexOf(4)) emitter.cellSpeed = cellSpeedStart * 2;

else if (evo.state && evo.inhib[evo.inhib.length-1] == 4) emitter.cellSpeed = cellSpeedStart *

2;

else {

 var factor = [2, 1.5, 1, 0.5, 0.2].reverse();

 emitter.cellSpeed = cellSpeedStart * factor[hgfScaleCount];

}

//Inhibitors of VEGF signaling // Inducing anglogenesis

var vegfScaleCount = parseInt(args[2+6]);

if (isNaN(vegfScaleCount) || vegfScaleCount<0 || vegfScaleCount>4) usage_exit();

var values = [1, 0.75, 0.5, 0.25, 0].reverse();

emitter.angio = values[vegfScaleCount];

//PARP inhibitors // Genome instability & mutation

var parpScaleCount = parseInt(args[2+7]);

if (isNaN(parpScaleCount) || parpScaleCount<0 || parpScaleCount>4) usage_exit();

if (entro.state && evo.inhib.indexOf(6)) emitter.immuneAvoid = immuneAvoidStart + 0.04;

else if (evo.state && evo.inhib[evo.inhib.length-1] == 6) emitter.immuneAvoid =

immuneAvoidStart + 0.04;

else {

 var offset = [0.04, 0.02, 0, -0.02, -0.05]; //.reverse();

 emitter.immuneAvoid = immuneAvoidStart + offset[parpScaleCount];

}

//Proapoptotic BH3 mimetics // Resisting cell death

var proapoptoticScaleCount = parseInt(args[2+8]);

if (isNaN(proapoptoticScaleCount) || proapoptoticScaleCount<0 || proapoptoticScaleCount>4)

usage_exit();

var values = [1, 0.75, 0.5, 0.25, 0].reverse();

emitter.proapoptotic = values[proapoptoticScaleCount];

//Aerobic glycolysis inhibitors // Reprogramming cellular energetics

var aerobicScaleCount = parseInt(args[2+9]);

if (isNaN(aerobicScaleCount) || aerobicScaleCount<0 || aerobicScaleCount>4) usage_exit();

var values = [1, 0.75, 0.5, 0.25, 0].reverse();

emitter.aerobic = values[aerobicScaleCount];

//EGFR inhibitors // Stimulating proliferative signaling

var egfrScaleCount = parseInt(args[2+10]);

if (isNaN(egfrScaleCount) || egfrScaleCount<0 || egfrScaleCount>4) usage_exit();

if (entro.state && evo.inhib.indexOf(9)) emitter.reproCountdown = reproCountdownStart / 3;

else if (evo.state && evo.inhib[evo.inhib.length-1] == 9) emitter.reproCountdown =

reproCountdownStart / 3;

else {

 var factor = [1/3.0, 1/1.5, 1.0, 1.5, 3].reverse();

 emitter.reproCountdown = reproCountdownStart * factor[egfrScaleCount];

}

 88

function StageMock() {

 this.cells = [];

 this.getNumChildren = function () {

 return this.cells.length;

 };

 this.getChildAt = function(idx) {

 return this.cells[idx];

 };

 this.addChild = function(cell) {

 this.cells.push(cell);

 }

 this.removeChildAt = function(idx) {

 this.cells.splice(idx, 1);

 }

}

// function to create new cells (functions used for visualisation are inactive)

function createCell(parent) {

 var cell = {} //new createjs.Shape(); /*visualisation*/

 //cell.graphics.setStrokeStyle(emitter.cellSize *

0.4).beginStroke(emitter.cellStrokeColor).beginFill(emitter.cellColor).drawCircle(0, 0,

emitter.cellSize); /*visualisation*/

 // a new cell cannnot reproduce itselfe in the same tick it is created

 cell.canReproduce = false;

 // if the created cell is the initial cell it is placed in the middle of the petri dish

 if (parent == motherID) {

 cell.x = emitter.x;

 cell.y = emitter.y;

 cell.canReproduce = true;

 cell.hayflick = emitter.hayflick;

 }

 // all other cells are placed next to its mother cell in a random angle

 else {

 motherCell = stage.getChildAt(parent);

 cell.x = motherCell.x + Math.sin(Math.random() * 360) * emitter.cellSize * 2;

 cell.y = motherCell.y + Math.cos(Math.random() * 360) * emitter.cellSize * 2;

 cell.hayflick = motherCell.hayflick;

 };

 // cell get values from emitter

 cell.speedX = (Math.random() * (2 * emitter.cellSpeed)) - emitter.cellSpeed;

 cell.speedY = (Math.random() * (2 * emitter.cellSpeed)) - emitter.cellSpeed;

 cell.time = 0;

 cell.reproIn = emitter.reproCountdown;

 cell.hayflickReduction = emitter.hayflickReduction;

 cell.growthChance = emitter.growthChance;

 cell.immuneAvoid = emitter.immuneAvoid;

 cell.immuneCountdown = emitter.immuneCountdown;

 cell.parried = false;

 cell.immuneResistance = emitter.immuneResistance;

 cell.angio = emitter.angio;

 cell.proapoptotic = emitter.proapoptotic;

 cell.aerobic = emitter.aerobic;

 // cell object is added to array of all objects and output value "allCells" is counted up

by 1

 stage.addChild(cell);

 allCells ++;

}

// function to create a group of initial cells

function createCells(count) {

 for (var i = 0; i < count; i++) {

 var cell = {};

 cell.canReproduce = false;

 cell.x = emitter.x + Math.sin((360 / count) * i) * size * 0.05;

 cell.y = emitter.y + Math.cos((360 / count) * i) * size * 0.05;

 cell.hayflick = emitter.hayflick;

 cell.speedX = (Math.random() * (2 * emitter.cellSpeed)) - emitter.cellSpeed;

 cell.speedY = (Math.random() * (2 * emitter.cellSpeed)) - emitter.cellSpeed;

 cell.time = 0;

 cell.reproIn = emitter.reproCountdown;

 cell.hayflickReduction = emitter.hayflickReduction;

 cell.growthChance = emitter.growthChance;

 89

 cell.immuneAvoid = emitter.immuneAvoid;

 cell.immuneCountdown = emitter.immuneCountdown;

 cell.parried = false;

 cell.immuneResistance = emitter.immuneResistance;

 cell.angio = emitter.angio;

 cell.proapoptotic = emitter.proapoptotic;

 cell.aerobic = emitter.aerobic;

 stage.addChild(cell);

 allCells ++;

 }

}

// function to calculate distance between 2 objects

function sqrLineDistance(point1, point2) {

 var xs = 0;

 var ys = 0;

 xs = point2.x - point1.x;

 xs = xs * xs;

 ys = point2.y - point1.y;

 ys = ys * ys;

 return (xs + ys);

}

stage = new StageMock();

motherID = 0;

//create initinial population of 10 cells;

createCells(10);

//**** RUN MAIN LOOP *****

for (var iteration=0; iteration<num_steps; iteration++) {

 var elapsed = 50;

 deadCellsTemp = 0;

 newCellsTemp = 0;

 // not in use

 evo.countdown --;

 if (evo.countdown <= 0) {

 evo.countdown = 50;

 evo.inhib.push (Math.floor(Math.random() * 10));

 if (evo.inhib.length > 3) {

 evo.inhib.shift();

 }

 //console.log(evo.inhib);

 //console.log(evo.inhib[evo.inhib.length-1]);

 }

 // values for tolerated overlapping of cells are set

 refDistOverlap = (emitter.cellSize * 1.2) * (emitter.cellSize * 1.2);

 refDistCircle = (resultCircleSize - emitter.cellSize) * (resultCircleSize -

emitter.cellSize)

 // the following happens for each cell

 for (var i=0; i < stage.getNumChildren(); i++) {

 var cell = stage.getChildAt(i);

 cell.growthChance = emitter.growthChance;

 // check if cell may reproduce

 if (cell.canReproduce == true && cell.reproIn <= 0) {

 if (Math.random() <= (cell.growthChance + (0.05 * emitter.inflammation))/* &&

stage.getNumChildren() < 1800*/) { //3000) {

 if (cell.hayflick>1 && cell.hayflick-cell.hayflickReduction<=1) {

 hayflickReached++;

 }

 cell.hayflick -= cell.hayflickReduction;

 createCell(i);

 newCellsTemp ++;

 }

 90

 cell.reproIn = emitter.reproCountdown;

 }

 deleted = false;

 for (var j=i+1; j < stage.getNumChildren(); j++) {

 var otherCell = stage.getChildAt(j);

 if (sqrLineDistance (cell, otherCell) < refDistOverlap) {

 stage.removeChildAt(i)

 //console.log("overlapping");

 overlappingCells ++;

 //deadCells ++;

 deadCellsTemp ++;

 i--;

 deleted = true;

 break;

 }

 }

 if (!deleted) {

 // check if cell is attacked by immune system

 if (cell.immuneCountdown == 0 && Math.random() > cell.immuneAvoid) {

 cell.parried = true;

 immuneAttacked ++;

 }

 // if cell is attacked by immune system the attack duration is reduced by 1

 if (cell.parried == true) {

 //cell.graphics.clear().setStrokeStyle(emitter.cellSize *

0.25).beginStroke(minusColor).beginFill(hgfColor).drawCircle(0, 0, emitter.cellSize);

/*visualisation*/

 cell.immuneResistance --;

 }

 else if (cell.immuneCountdown < 0) {

 cell.immuneCountdown = emitter.immuneCountdown;

 }

 // cell speed gets reduced

 cell.time += elapsed / 1000;

 var cellBreak = cell.time + 1;

 if (cellBreak > emitter.breakCap) {

 cellBreak = emitter.breakCap;

 };

 // cell is moved according to speed

 cell.x += cell.speedX / cellBreak;

 cell.y += cell.speedY / cellBreak;

 cell.canReproduce = true;

 cell.reproIn -= emitter.inflammation;

 cell.immuneCountdown --;

 cell.deathResistance = (cell.angio + cell.proapoptotic + cell.aerobic) / 3;

 // check if cell dies

 if (((cell.hayflick <= 0 || cell.immuneResistance <= 0) && Math.random() >=

cell.deathResistance) || sqrLineDistance(cell, emitter) > refDistCircle) {

 stage.removeChildAt(i);

 i--;

 deadCellsTemp ++;

 }

 }

 }

 // output values get updated

 deadCells += deadCellsTemp;

 currentCells = allCells - deadCells;

 if (newCellsTemp>0 || deadCellsTemp>0) {

 cellChange = (newCellsTemp / (newCellsTemp + deadCellsTemp));

 } else {

 cellChange = 0;

 }

 currentCellsMax = Math.max(currentCellsMax, currentCells);

 currentCellsMin = Math.min(currentCellsMin, currentCells);

 deadCellsMax = Math.max(deadCellsMax, deadCellsTemp);

 deadCellsMin = Math.min(deadCellsMin, deadCellsTemp);

 91

 newCellsMax = Math.max(newCellsMax, newCellsTemp);

 newCellsMin = Math.min(newCellsMin, newCellsTemp);

 ccCollect += cellChange;

 ccCount ++;

 ccAverage = ccCollect / ccCount;

}

// output values are added to protocol

var outputFields = [allCells, newCellsMin, newCellsMax, currentCells, currentCellsMin,

currentCellsMax,

 deadCells, deadCellsMin, deadCellsMax, overlappingCells, hayflickReached,

immuneAttacked, ccAverage];

console.log(args.slice(2).join(",") + "," + outputFields.join(","));

Batch Commented

(Boris Lau, PSIORI GmbH)

var childProcess = require('child_process');

var async = require('async')

// number of simulation steps per experiment

num_iterations = 6000

num_params = 10

// number of parallel processes (this is only to increase processing speed and has no impact

on simulation)

num_processes = 6

// number of repetitions per experiment to avoid exeptional values

num_repetitions = 5

node_cmd = process.argv[0]

// we use an array called "combinations" to store all combinations of dossages we want to

simulate (each combination will be one experiment)

// we start with all parameters being normal (dossage 2, dossages 0 and 1 are for inhibition,

dosages 3 and 4 are for experssion)

combinations = [{}]

// dossage for changed values is set to 4 (maximum expression)

var change_value = 4

// get combinations of parameter indexes that should be changed (we create an array of all

combinations for 1, 2 and 3 chaged values (dossage 4))

for (var a=0; a<num_params; a++) {

 changes = {};

 changes[a] = change_value;

 combinations.push(changes)

 for (var b=a+1; b<num_params; b++) {

 changes = {};

 changes[a] = change_value; changes[b] = change_value;

 combinations.push(changes)

 for (var c=b+1; c<num_params; c++) {

 changes = {};

 changes[a] = change_value; changes[b] = change_value; changes[c] = change_value;

 combinations.push(changes)

 }

 }

}

// set default parameters to 2

default_params = []

for (var i=0; i<num_params; i++) {

 default_params.push(2)

}

// repeat combinations equal to "num_repetitions" times

repeated_combinations = []

for (var i=0; i<num_repetitions; i++) {

 repeated_combinations = repeated_combinations.concat(combinations);

}

// here we print the informatoin which is used to initialize an experiment in our protocol

console.log('num_steps,growth,immune,immortality,inflammation,metastatis,angiogenesis,instabil

ity,deathresistance,energetics,signaling,allCells,newCellsMin,newCellsMax,currentCells,current

CellsMin,currentCellsMax,deadCells,deadCellsMin,deadCellsMax,overlappingCells,hayflickReached,

 92

immuneAttacked,ccAverage');

// execute the simulation parallelized (num_processes, only to increase processing speed, no

impact on simulation)

async.eachLimit(repeated_combinations, num_processes, function(c, callback) {

 // clone the default parameter array, and modify

 p = default_params.slice(0);

 for (var idx in c) {

 if (c.hasOwnProperty(idx)) {

 p[idx] = c[idx]

 }

 }

 cmd = node_cmd + " mitosis_science_simulation.js " + num_iterations + " " + p.join(" ");

 // callback for returning simulation process

 function res(error, stdout, stderr) {

 console.log(stdout.trim());

 callback(error); // callback for the eachLimit handler

 }

 // async call to exec, calls res on return

 childProcess.exec(cmd, res);

});

Full Code Hematopoiesis

(Oliver Worm, PSIORI GmbH)

Simulation Master

@author Oliver Worm, PSIORI GmbH

generate all the models and objects needed

from BloodStream import *

from BoneMarrow import *

from StatConfig import *

from Statistics import *

from MarrowCell import *

import time

import csv

class SimulationMaster():

 def __init__(self):

 # generate cell_stats

 self.cell_stats = StatConfig()

 blood_map = {"ery": 400000, "gran": 500, "throm": 20000}

 self.blood_stream = BloodStream(blood_map=blood_map, cell_stats=self.cell_stats)

 self.bone_marrow = BoneMarrow(cell_stats=self.cell_stats)

 self.bone_marrow.addCell(MarrowCell("cp_1", 70, 0, False))

 marrow_map = {"ery": 8000, "gran": 250, "throm": 40000} # 9000, 300, 35000

 self.bone_marrow.addTransmitters(marrow_map)

 self.statistics = Statistics(blood_stream=self.blood_stream,

bone_marrow=self.bone_marrow)

 def simulationStep(self, tick):

 time_series = {}

 current_time = time.time()

 # remove dead blood cells from the blood stream

 dead_blood_cells = self.blood_stream.checkDeadCells(tick)

 time_series["remove_blood_cells"] = time.time() - current_time

 current_time = time.time()

 # add transmitters of these dead cells to the bone marrow

 self.bone_marrow.addTransmitters(dead_blood_cells)

 time_series["add_transmitters"] = time.time() - current_time

 current_time = time.time()

 # assign free transmitters to marrow cells

 self.bone_marrow.assignFreeTransmitters()

 time_series["assign_transmitters"] = time.time() - current_time

 current_time = time.time()

 # split cells at get all cells that will be transmitted to the blood stream

 93

 new_blood_cells = self.bone_marrow.splitCells(tick)

 time_series["split_cells"] = time.time() - current_time

 current_time = time.time()

 # add these cells to the blood stream

 self.blood_stream.addBloodCells(new_blood_cells, tick)

 time_series["add_blood_cells"] = time.time() - current_time

 current_time = time.time()

 # update statistics

 self.statistics.addBloodCellValue(tick)

 self.statistics.addTransmitterValue(tick)

 self.statistics.addMarrowCellValue(tick)

 time_series["update_statistics"] = time.time() - current_time

 self.statistics.addTimeValue(tick, time_series)

 def dataExport(self, filename):

 # export all information to a .csv for analysis

 filename += ".csv"

 blood_ery = self.statistics.getBloodLine("ery")

 blood_gran = self.statistics.getBloodLine("gran")

 blood_throm = self.statistics.getBloodLine("throm")

 total_cells = self.statistics.getMarrowCellLine("total")

 filled_cells = self.statistics.getMarrowCellLine("filled")

 cp_cells = self.statistics.getMarrowCellGroupLine("cp")

 ery_cells = self.statistics.getMarrowCellGroupLine("ery")

 gran_cells = self.statistics.getMarrowCellGroupLine("gran")

 throm_cells = self.statistics.getMarrowCellGroupLine("throm")

 all_cell_types = list(self.bone_marrow.getCellTypes())

 all_cell_types.sort()

 all_cell_lines = {}

 for cell_type in all_cell_types:

 all_cell_lines[cell_type] = self.statistics.getMarrowCellLine(cell_type)

 with open(filename, 'w') as new_file:

 wrtr = csv.writer(new_file, delimiter=';', quotechar='"')

 title_row = ['tick', 'blood_ery', 'blood_gran', 'blood_throm',

'total_marrow_cells', 'filled_marrow_cells', 'cp_group', 'ery_group', 'gran_group',

'throm_group']

 title_row.extend(all_cell_types)

 wrtr.writerow(title_row)

 for i in range(len(total_cells)):

 data_row = [i, blood_ery[i], blood_gran[i], blood_throm[i], total_cells[i],

filled_cells[i], cp_cells[i], ery_cells[i], gran_cells[i], throm_cells[i]]

 data_row.extend([all_cell_lines[cell_type][i] for cell_type in

all_cell_types])

 wrtr.writerow(data_row)

BloodStream

@author Oliver Worm, PSIORI GmbH

blood stream object, containing all relevant information about its cells

import random

class BloodStream():

 def __init__(self, blood_map, cell_stats):

 # map over each tick and the cells dying in it

 self.tick_cells = {}

 # total counter of present blood cells

 self.blood_cell_count = {}

 # stats of cells (life span)

 self.cell_stats = cell_stats

 # generating cells for the initial setup

 for cell_type, quantity in blood_map.items():

 self.blood_cell_count[cell_type] = quantity

 if not cell_type in self.cell_stats.getBloodCellStats():

 # if this cell type is unknown in the blood, this cell wil not die

 max_life_span = float('inf')

 94

 else:

 # otherwise get the average life span from the stats

 max_life_span = self.cell_stats.getBloodCellStats()[cell_type].getLifeSpan()

 for c in range(quantity):

 # for all cells calculate when it will die and add it to the map

 death_tick = random.randint(0, max_life_span)

 if not death_tick in self.tick_cells:

 self.tick_cells[death_tick] = {}

 if not cell_type in self.tick_cells[death_tick]:

 self.tick_cells[death_tick][cell_type] = 0

 self.tick_cells[death_tick][cell_type] += 1

 # check which cells die in this tick

 def checkDeadCells(self, tick):

 if tick not in self.tick_cells:

 return {}

 death_hash = self.tick_cells[tick]

 # check the cell types in that map entry

 for cell_type in death_hash:

 if not cell_type in self.cell_stats.getBloodCellStats():

 del death_hash[cell_type]

 if cell_type in self.blood_cell_count:

 self.blood_cell_count[cell_type] -= death_hash[cell_type]

 # this map entry can be deleted as this tick will never appear again

 del self.tick_cells[tick]

 return death_hash

 # add new cells to the blood stream

 def addBloodCells(self, blood_map, tick):

 # works in the same way as init

 for cell_type, quantity in blood_map.items():

 if not cell_type in self.blood_cell_count:

 self.blood_cell_count[cell_type] = 0

 self.blood_cell_count[cell_type] += quantity

 if not cell_type in self.cell_stats.getBloodCellStats():

 death_tick = float('inf')

 if not death_tick in self.tick_cells:

 self.tick_cells[death_tick] = {}

 if not cell_type in self.tick_cells[death_tick]:

 self.tick_cells[death_tick][cell_type] = 0

 self.tick_cells[death_tick][cell_type] += quantity

 else:

 life_span = self.cell_stats.getBloodCellStats()[cell_type].getLifeSpan()

 for c in range(quantity):

 death_tick = (int)(tick + random.gauss(life_span, life_span * 0.1))

 if not death_tick in self.tick_cells:

 self.tick_cells[death_tick] = {}

 if not cell_type in self.tick_cells[death_tick]:

 self.tick_cells[death_tick][cell_type] = 0

 self.tick_cells[death_tick][cell_type] += 1

 # get the number of blood cells of a specific type

 def getBloodCellCount(self, cell_type):

 if not cell_type in self.blood_cell_count:

 return 0

 return self.blood_cell_count[cell_type]

 # check which cell types are currently present in the blood

 def getBloodCellTypes(self):

 return self.blood_cell_count.keys()

BoneMarrow

@author Oliver Worm, PSIORI GmbH

import random

from MarrowCell import *

import time

class BoneMarrow:

 95

 def __init__(self, cell_stats):

 self.marrow_cells = []

 self.total_transmitters = {}

 self.free_transmitters = {}

 self.marrow_cell_count = {}

 self.cell_stats = cell_stats

 # number of cells that have space ein the bone marrow

 self.marrow_space = 10000

 def addCell(self, new_cell):

 # add a new cell to the bone marrow

 cell_type = new_cell.getType()

 new_cell.setSplitStats(self.cell_stats.getMarrowCellStats(cell_type))

 self.marrow_cells.append(new_cell)

 # add it to the cell counters

 if not cell_type in self.marrow_cell_count:

 self.marrow_cell_count[cell_type] = 0

 self.marrow_cell_count[cell_type] += 1

 def addTransmitters(self, dead_cells):

 # add free transmitters to the marrow from dead blood cells

 for cell_type, quantity in dead_cells.items():

 trans_type = cell_type + "_trans"

 if not trans_type in self.total_transmitters:

 self.total_transmitters[trans_type] = 0

 self.free_transmitters[trans_type] = 0

 self.total_transmitters[trans_type] += quantity

 self.free_transmitters[trans_type] += quantity

 def assignFreeTransmitters(self):

 # first some cells may lose some transmitter

 for cell in self.marrow_cells:

 if random.random() > 0.95:

 for trans_type in cell.getStats().getApplicableTransmitters():

 # should not happen, but if the free transmitter dict doesn't know this

type...

 if trans_type not in self.free_transmitters:

 self.free_transmitters[trans_type] = 0

 self.free_transmitters[trans_type] += cell.removeTransmitter(trans_type)

 # which transmitters are present?

 applicable_transmitters = list(self.free_transmitters.keys())

 # as long as transmitters can still be applied

 while (len(applicable_transmitters) > 0):

 # choose one at random

 chosen_transmitter = applicable_transmitters[random.randint(0,

len(applicable_transmitters) - 1)]

 # do we even have transmitter left?

 if self.free_transmitters[chosen_transmitter] <= 0:

 applicable_transmitters.remove(chosen_transmitter)

 continue

 # see if that transmitter can be applied

 transmitter_applicable = False

 for cell in self.marrow_cells:

 if not cell.getFilled() and chosen_transmitter in

cell.getStats().getApplicableTransmitters():

 transmitter_applicable = True

 break

 # no cell present that this transmitter can bind to? remove it and continue

 if not transmitter_applicable:

 applicable_transmitters.remove(chosen_transmitter)

 continue

 # check all cells, the ones not already filled are mapped according to their

filling state and total space

 orig_distribution_map = []

 index_map = []

 for index, cell in enumerate(self.marrow_cells):

 if cell.getFilled():

 continue

 # make it inverse so cells further down the road have a higher likelihood of

receiving transmitter

 transmitter_influence =

cell.getStats().getTransmitterSpace(chosen_transmitter)

 if transmitter_influence > 0.0:

 96

 # insert the new value

 orig_distribution_map.append(1.0 / transmitter_influence)

 index_map.append(index)

 # choose x random cells from that distribution_map, shortening the total

iterations needed

 chosen_cells = []

 cell_loop_count = 1

 if len(orig_distribution_map) > 1:

 cell_loop_count = random.randint(1, len(orig_distribution_map) - 1)

 for x in range(cell_loop_count):

 # break if none of that transmitter is left

 if self.free_transmitters[chosen_transmitter] <= 0:

 break

 distribution_map = orig_distribution_map.copy()

 # normalize distribution map and sum up

 distribution_sum = sum(orig_distribution_map)

 distribution_map[0] = float(orig_distribution_map[0] / distribution_sum)

 for i in range(1, len(distribution_map)):

 distribution_map[i] = distribution_map[i - 1] +

float(orig_distribution_map[i] / distribution_sum)

 random_dist = random.random()

 # find the cell we just chose through the index map

 chosen_index = 0

 while distribution_map[chosen_index] < random_dist:

 chosen_index += 1

 # multiple cells are taken, we have to make sure no doubles occur

 # simply go to the next cell, loop at the end

 while chosen_index in chosen_cells:

 chosen_index += 1

 if chosen_index >= len(distribution_map):

 chosen_index = 0

 # get the cell chosen by probability

 chosen_cell = self.marrow_cells[index_map[chosen_index]]

 # how much of the transmitter can this cell actually take?

 free_transmitter_space =

chosen_cell.getFreeTransmitterSpace(chosen_transmitter)

 # can we attach it all? or only some of it?

 bind_transmitter = min(self.free_transmitters[chosen_transmitter],

free_transmitter_space)

 chosen_cell.attachTransmitter(chosen_transmitter, bind_transmitter)

 # remove the attached transmitter from the quantity of free transmitter

 self.free_transmitters[chosen_transmitter] -= bind_transmitter

 del orig_distribution_map[chosen_index]

 del index_map[chosen_index]

 # we are done with this transmitter for this tick!

 applicable_transmitters.remove(chosen_transmitter)

 def splitCells(self, tick):

 # keep track of all cells that were split in this method call

 split_cells = []

 blood_stream_cells = {}

 # go through all cells in the marrow

 for cell in self.marrow_cells:

 # if this cell is dorment or needs transmitter and is not yet filled

 if cell.getActivationTick() > tick or (cell.getStats().getTransDep() and not

cell.getFilled()):

 continue

 # is there even space? if not, only cancer cells can split

 if len(self.marrow_cells) >= self.marrow_space and not cell.getCancerous():

 continue

 # cancer cells can't split all the time

 if cell.getCancerous() and random.random() < 0.95:

 continue

 # this cell can be split and can later be deleted

 split_cells.append(cell)

 97

 # check if this cell even has enough telomere to split. otherwise delete.

 if cell.getTelomereLength() - cell.getStats().getSplitTelomereLoss() <= 0:

 for trans_type in cell.getStats().getApplicableTransmitters():

 # should not happen, but if the free transmitter dict doesn't know this

type...

 if trans_type not in self.free_transmitters:

 self.free_transmitters[trans_type] = 0

 self.free_transmitters[trans_type] += cell.removeTransmitter(trans_type)

 continue

 # what will this cell differentiate into?

 split_result = cell.getSplitResult()

 # is this an end-product?

 if split_result == "ery":

 if not split_result in blood_stream_cells:

 blood_stream_cells[split_result] = 0

 blood_stream_cells[split_result] += 2

 for trans_type in cell.getStats().getApplicableTransmitters():

 if trans_type not in self.total_transmitters:

 self.total_transmitters[trans_type] = 0

 self.total_transmitters[trans_type] -=

cell.getStats().getTransmitterAttached(trans_type)

 continue

 elif split_result == "gran":

 if not split_result in blood_stream_cells:

 blood_stream_cells[split_result] = 0

 blood_stream_cells[split_result] += 2

 for trans_type in cell.getStats().getApplicableTransmitters():

 if trans_type not in self.total_transmitters:

 self.total_transmitters[trans_type] = 0

 self.total_transmitters[trans_type] -=

cell.getStats().getTransmitterAttached(trans_type)

 continue

 elif split_result == "throm":

 if not split_result in blood_stream_cells:

 blood_stream_cells[split_result] = 0

 blood_stream_cells[split_result] += 20

 for trans_type in cell.getStats().getApplicableTransmitters():

 if trans_type not in self.total_transmitters:

 self.total_transmitters[trans_type] = 0

 self.total_transmitters[trans_type] -=

cell.getStats().getTransmitterAttached(trans_type)

 continue

 # return the bound transmitter to the marrow if the cell was not end-product

 for trans_type in cell.getStats().getApplicableTransmitters():

 # should not happen, but if the free transmitter dict doesn't know this

type...

 if trans_type not in self.free_transmitters:

 self.free_transmitters[trans_type] = 0

 self.free_transmitters[trans_type] += cell.removeTransmitter(trans_type)

 # create first new cell

 new_telomere_length = cell.getTelomereLength() -

cell.getStats().getSplitTelomereLoss()

 dormency = self.cell_stats.getMarrowCellStats(split_result).getSplitDormency()

 new_activation_tick = int(tick + random.gauss(dormency, dormency * 0.1))

 new_cancerous = self.cell_stats.getMarrowCellStats(split_result).getCancerous()

 new_cell_1 = MarrowCell(split_result, new_telomere_length, new_activation_tick,

new_cancerous)

 self.addCell(new_cell_1)

 # create second new cell depending in whether the cell is self-replicating

 if cell.getStats().getSelfReplicating():

 new_telomere_length = cell.getTelomereLength() -

cell.getStats().getSplitTelomereLoss()

 dormency =

self.cell_stats.getMarrowCellStats(cell.getType()).getSplitDormency()

 new_activation_tick = int(tick + random.gauss(dormency, dormency * 0.1))

 new_cancerous =

self.cell_stats.getMarrowCellStats(cell.getType()).getCancerous()

 new_cell_2 = MarrowCell(cell.getType(), new_telomere_length,

new_activation_tick, new_cancerous)

 self.addCell(new_cell_2)

 else:

 new_cancerous =

self.cell_stats.getMarrowCellStats(split_result).getCancerous()

 98

 new_telomere_length = cell.getTelomereLength() -

cell.getStats().getSplitTelomereLoss()

 dormency = self.cell_stats.getMarrowCellStats(split_result).getSplitDormency()

 new_activation_tick = int(tick + random.gauss(dormency, dormency * 0.1))

 new_cell_2 = MarrowCell(split_result, new_telomere_length,

new_activation_tick, new_cancerous)

 self.addCell(new_cell_2)

 # remove all cells that were split!

 for cell in split_cells:

 self.marrow_cells.remove(cell)

 self.marrow_cell_count[cell.getType()] -= 1

 # remove random cells as long as we are over the limit

 while(len(self.marrow_cells) > self.marrow_space):

 cell = self.marrow_cells[random.randint(0, len(self.marrow_cells) - 1)]

 if cell.getStats().getAnkered():

 # if this cell is ankered it can not be removed

 continue

 # return the bound transmitter to the marrow if the cell was not end-product

 for trans_type in cell.getStats().getApplicableTransmitters():

 # should not happen, but if the free transmitter dict doesn't know this

type...

 if trans_type not in self.free_transmitters:

 self.free_transmitters[trans_type] = 0

 self.free_transmitters[trans_type] += cell.removeTransmitter(trans_type)

 self.marrow_cells.remove(cell)

 self.marrow_cell_count[cell.getType()] -= 1

 # return the cells that go into the blood stream

 return blood_stream_cells

 def getTotalTransmitterStrength(self, trans_type):

 if not trans_type in self.total_transmitters:

 return 0

 return self.total_transmitters[trans_type]

 def getFreeTransmitterStrength(self, trans_type):

 if not trans_type in self.free_transmitters:

 return 0

 return self.free_transmitters[trans_type]

 def getTransmitterTypes(self):

 return self.total_transmitters.keys()

 def getTotalCellCount(self):

 return len(self.marrow_cells)

 def getFilledCellCount(self):

 count = 0

 for c in self.marrow_cells:

 if c.getFilled():

 count += 1

 return count

 def getAverageTelomereLength(self):

 if len(self.marrow_cells) == 0:

 return 0

 total = 0

 for c in self.marrow_cells:

 total += c.getTelomereLength()

 return float(total / len(self.marrow_cells))

 def getCellTypes(self):

 return self.marrow_cell_count.keys()

 def getCellCount(self, cell_type):

 if not cell_type in self.marrow_cell_count:

 return 0

 return self.marrow_cell_count[cell_type]

 def getCell(self, index):

 return self.marrow_cells[index]

 def printCellInformation(self):

 print("INFORMATION:")

 for c in self.marrow_cells:

 99

 c.printCellInformation()

 print("----")

MarrowCell

@author Oliver Worm, PSIORI GmbH

from copy import deepcopy

from math import ceil

class MarrowCell:

 def __init__(self, cell_type, telomere_length, activation_tick, cancerous):

 self.cell_type = cell_type

 self.telomere_length = telomere_length

 self.activation_tick = activation_tick

 self.split_stats = None

 self.filled = False

 self.cancerous = cancerous

 def setSplitStats(self, split_stats):

 self.split_stats = deepcopy(split_stats)

 def attachTransmitter(self, trans_type, trans_quantity):

 self.filled = self.split_stats.attachTransmitter(trans_type, trans_quantity)

 def removeTransmitter(self, trans_type):

 self.filled = False

 return self.split_stats.removeTransmitter(trans_type)

 def getType(self):

 return self.cell_type

 def getSplitResult(self):

 return self.split_stats.getSplitResult()

 def getStats(self):

 return self.split_stats

 def getActivationTick(self):

 return self.activation_tick

 def getFreeTransmitterSpace(self, trans_type):

 # catch the case that this cell can't accept this transmitter

 if not trans_type in self.split_stats.getApplicableTransmitters():

 return 0

 # how filled is this cell already?

 transmitter_percentage = self.split_stats.getFilledPercentage()

 # how much of a certain transmitter can be accepted given that percentage?

 free_space = ceil((1.0 - transmitter_percentage) *

self.split_stats.getTransmitterSpace(trans_type))

 return free_space

 def getFilled(self):

 return self.filled

 def getCancerous(self):

 return self.cancerous

 def getTelomereLength(self):

 return self.telomere_length

 def printCellInformation(self):

 print("Cell type:", self.cell_type)

 print("Telomere length:", self.telomere_length)

MarrowCellStats

@author Oliver Worm, PSIORI GmbH

from random import randint

class MarrowCellStats:

 def __init__(self, cell_type, split_telomere_loss, split_dormency, transmitter_space,

split_results, self_rep, cancerous, trans_dependent, is_ankered):

 100

 self.cell_type = cell_type

 self.split_telomere_loss = split_telomere_loss

 self.transmitter_space = transmitter_space

 self.transmitter_attached = {}

 self.split_results = split_results

 self.split_dormency = split_dormency

 self.self_rep = self_rep

 self.filled_percentage = 0.0

 self.cancerous = cancerous

 self.trans_dependent = trans_dependent

 self.is_ankered = is_ankered

 def attachTransmitter(self, trans_type, trans_quantity):

 if not trans_type in self.transmitter_space:

 return self.filled_percentage >= 1.0

 # make space if necessary

 if not trans_type in self.transmitter_attached:

 self.transmitter_attached[trans_type] = 0

 # attach transmitter

 self.transmitter_attached[trans_type] += trans_quantity

 self.filled_percentage += float(trans_quantity / self.transmitter_space[trans_type])

 return self.filled_percentage >= 1.0

 def removeTransmitter(self, trans_type):

 # remove all transmitter of that type from the cell

 if not trans_type in self.transmitter_attached:

 return 0

 # reset the filled percentage of that cell to the state without that transmitter

 self.filled_percentage -= float(self.transmitter_attached[trans_type] /

self.transmitter_space[trans_type])

 return self.transmitter_attached.pop(trans_type)

 def getSplitResult(self):

 max_trans = 0

 # assign a random transmitter to catch cancer cells without transmitter

 best_result = list(self.transmitter_space.keys())[randint(0,

len(self.transmitter_space.keys()) - 1)]

 # check which transmitter is (percentage-wise) strongest in this cell

 for trans_type in self.transmitter_attached:

 trans_strength = float(self.transmitter_attached[trans_type] /

self.transmitter_space[trans_type])

 if trans_strength > max_trans:

 max_trans = trans_strength

 best_result = trans_type

 return self.split_results[best_result]

 def getTransmitterSpace(self, trans_type):

 # how much of this transmitter can attach to this cell?

 if not trans_type in self.transmitter_space:

 return 0

 return self.transmitter_space[trans_type]

 def getTransmitterAttached(self, trans_type):

 if not trans_type in self.transmitter_attached:

 return 0

 return self.transmitter_attached[trans_type]

 def getApplicableTransmitters(self):

 return self.transmitter_space.keys()

 def getFilledPercentage(self):

 return self.filled_percentage

 def getSplitTelomereLoss(self):

 return self.split_telomere_loss

 def getSplitDormency(self):

 return self.split_dormency

 def getSelfReplicating(self):

 return self.self_rep

 def getCancerous(self):

 return self.cancerous

 def getTransDep(self):

 101

 return self.trans_dependent

 def getAnkered(self):

 return self.is_ankered

BloodCellStats

@author Oliver Worm, PSIORI GmbH

class BloodCellStats:

 def __init__(self, cell_type, life_span):

 self.cell_type = cell_type

 self.life_span = life_span

 def getLifeSpan(self):

 return self.life_span

StatConfig

@author Oliver Worm, PSIORI GmbH

from BloodCellStats import *

from MarrowCellStats import *

from itertools import combinations

from copy import deepcopy

class StatConfig():

 def __init__(self):

 # generate healthy blood cell stats

 self.blood_cell_stats = {}

 for cell_type in all_blood_cell_types():

 cell_stats = BloodCellStats(cell_type, blood_cell_life_span(cell_type))

 self.blood_cell_stats[cell_type] = cell_stats

 # generate healthy marrow cell stats

 self.marrow_cell_stats = {}

 for cell_type in all_marrow_cell_types():

 cell_stats = MarrowCellStats(cell_type, marrow_cell_telomere_loss(cell_type),

 marrow_cell_split_dormency(cell_type),

 marrow_cell_transmitter_space(cell_type),

 marrow_cell_split_results(cell_type),

 marrow_cell_self_rep(cell_type),

 marrow_cell_cancerous(cell_type),

 marrow_cell_trans_dependent(cell_type),

 marrow_cell_ankered(cell_type))

 self.marrow_cell_stats[cell_type] = cell_stats

 # generate list of all possible combinations of defects

 defects = ["diff", "tel", "tra"]

 defect_combinations = []

 final_stages = ["ery_5", "gran_5", "throm_5"]

 cancer_cell_stats = {}

 for i in range(len(defects)):

 defect_combinations.extend(list(combinations(defects, i + 1)))

 for df in defect_combinations:

 print(list(df))

 for mc in self.marrow_cell_stats:

 new_stats = deepcopy(self.marrow_cell_stats[mc])

 final_stage = new_stats.cell_type in final_stages

 # append mutations to cell name

 name_app = ""

 for mut in df:

 name_app += "_" + mut

 new_stats.cell_type = new_stats.cell_type + name_app

 new_stats.cancerous = True

 # diff prevents further differentiation = same level!

 if "diff" in df:

 for r in new_stats.split_results:

 new_stats.split_results[r] = new_stats.cell_type

 # no diff? then cancer cells of the next stage with same mutations are

produced

 elif not final_stage:

 102

 for r in new_stats.split_results:

 new_stats.split_results[r] = new_stats.split_results[r] + name_app

 if "tel" in df:

 # no telomere loss

 new_stats.split_telomere_loss = 0

 if "tra" in df:

 # cells will reproduce slower but without transmitter

 new_stats.split_dormency = 20

 new_stats.trans_dependent = False

 cancer_cell_stats[new_stats.cell_type] = new_stats

 # append the cancer types to the stats array

 self.marrow_cell_stats.update(cancer_cell_stats)

 # get these statistics

 def getBloodCellStats(self):

 return self.blood_cell_stats

 # get only marrow cell relevant statistics

 def getAllMarrowCellStats(self):

 return self.marrow_cell_stats

 # get cell stats of a specific cell type

 def getMarrowCellStats(self, cell_type):

 return self.marrow_cell_stats[cell_type]

what kind of cells are present in normal bone marrow

def all_marrow_cell_types():

 return ["cp_1", "cp_2", "cp_3", "cp_4", "cp_5",

 "ery_1", "ery_2", "ery_3", "ery_4", "ery_5",

 "gran_1", "gran_2", "gran_3", "gran_4", "gran_5",

 "throm_1", "throm_2", "throm_3", "throm_4", "throm_5"]

how much telomere do they lose in a split

def marrow_cell_telomere_loss(cell_type):

 general_loss = 1

 telomere_loss = {"cp_1": 0,

 "cp_2": general_loss,

 "cp_3": general_loss,

 "cp_4": general_loss,

 "cp_5": general_loss,

 "ery_1": general_loss,

 "ery_2": general_loss,

 "ery_3": general_loss,

 "ery_4": general_loss,

 "ery_5": general_loss,

 "gran_1": general_loss,

 "gran_2": general_loss,

 "gran_3": general_loss,

 "gran_4": general_loss,

 "gran_5": general_loss,

 "throm_1": general_loss,

 "throm_2": general_loss,

 "throm_3": general_loss,

 "throm_4": general_loss,

 "throm_5": general_loss}

 if not cell_type in telomere_loss:

 return general_loss

 return telomere_loss[cell_type]

how long do they have to wait after splitting

def marrow_cell_split_dormency(cell_type):

 general_dormency = 5

 cancer_dormency = 50

 split_dormency = {"cp_1": general_dormency,

 "cp_2": general_dormency,

 "cp_3": general_dormency,

 "cp_4": general_dormency,

 "cp_5": general_dormency,

 "ery_1": general_dormency,

 "ery_2": general_dormency,

 "ery_3": general_dormency,

 "ery_4": general_dormency,

 "ery_5": general_dormency,

 "gran_1": general_dormency,

 "gran_2": general_dormency,

 "gran_3": general_dormency,

 103

 "gran_4": general_dormency,

 "gran_5": general_dormency,

 "throm_1": general_dormency,

 "throm_2": general_dormency,

 "throm_3": general_dormency,

 "throm_4": general_dormency,

 "throm_5": general_dormency}

 if not cell_type in split_dormency:

 return general_dormency

 return split_dormency[cell_type]

what transmitter types and how much do they need

def marrow_cell_transmitter_space(cell_type):

 transmitter_space = {"cp_1": {"ery_trans": 1024, "gran_trans": 1024, "throm_trans":

10240},

 "cp_2": {"ery_trans": 512, "gran_trans": 512, "throm_trans": 5120},

 "cp_3": {"ery_trans": 256, "gran_trans": 256, "throm_trans": 2560},

 "cp_4": {"ery_trans": 128, "gran_trans": 128, "throm_trans": 1280},

 "cp_5": {"ery_trans": 64, "gran_trans": 64, "throm_trans": 640},

 "ery_1": {"ery_trans": 32},

 "ery_2": {"ery_trans": 16},

 "ery_3": {"ery_trans": 8},

 "ery_4": {"ery_trans": 4},

 "ery_5": {"ery_trans": 2},

 "gran_1": {"gran_trans": 32},

 "gran_2": {"gran_trans": 16},

 "gran_3": {"gran_trans": 8},

 "gran_4": {"gran_trans": 4},

 "gran_5": {"gran_trans": 2},

 "throm_1": {"throm_trans": 320},

 "throm_2": {"throm_trans": 160},

 "throm_3": {"throm_trans": 80},

 "throm_4": {"throm_trans": 40},

 "throm_5": {"throm_trans": 20}}

 if not cell_type in transmitter_space:

 return {}

 return transmitter_space[cell_type]

what kind of cells are produced in a split

def marrow_cell_split_results(cell_type):

 split_results = {"cp_1": {"ery_trans": "cp_2", "gran_trans": "cp_2", "throm_trans":

"cp_2"},

 "cp_2": {"ery_trans": "cp_3", "gran_trans": "cp_3", "throm_trans":

"cp_3"},

 "cp_3": {"ery_trans": "cp_4", "gran_trans": "cp_4", "throm_trans":

"cp_4"},

 "cp_4": {"ery_trans": "cp_5", "gran_trans": "cp_5", "throm_trans":

"cp_5"},

 "cp_5": {"ery_trans": "ery_1", "gran_trans": "gran_1", "throm_trans":

"throm_1"},

 "ery_1": {"ery_trans": "ery_2"},

 "ery_2": {"ery_trans": "ery_3"},

 "ery_3": {"ery_trans": "ery_4"},

 "ery_4": {"ery_trans": "ery_5"},

 "ery_5": {"ery_trans": "ery"},

 "gran_1": {"gran_trans": "gran_2"},

 "gran_2": {"gran_trans": "gran_3"},

 "gran_3": {"gran_trans": "gran_4"},

 "gran_4": {"gran_trans": "gran_5"},

 "gran_5": {"gran_trans": "gran"},

 "throm_1": {"throm_trans": "throm_2"},

 "throm_2": {"throm_trans": "throm_3"},

 "throm_3": {"throm_trans": "throm_4"},

 "throm_4": {"throm_trans": "throm_5"},

 "throm_5": {"throm_trans": "throm"}}

 if not cell_type in split_results:

 return {}

 return split_results[cell_type]

does this cell reproduce itself or do both children differentiate

def marrow_cell_self_rep(cell_type):

 self_rep = {"cp_1": True,

 "cp_2": True,

 "cp_3": False,

 "cp_4": False,

 "cp_5": True,

 "ery_1": False,

 104

 "ery_2": False,

 "ery_3": False,

 "ery_4": False,

 "ery_5": False,

 "gran_1": False,

 "gran_2": False,

 "gran_3": False,

 "gran_4": False,

 "gran_5": False,

 "throm_1": False,

 "throm_2": False,

 "throm_3": False,

 "throm_4": False,

 "throm_5": False}

 if not cell_type in self_rep:

 return True

 return self_rep[cell_type]

is this cell cancerous

def marrow_cell_cancerous(cell_type):

 cancerous = {"cp_1": False,

 "cp_2": False,

 "cp_3": False,

 "cp_4": False,

 "cp_5": False,

 "ery_1": False,

 "ery_2": False,

 "ery_3": False,

 "ery_4": False,

 "ery_5": False,

 "gran_1": False,

 "gran_2": False,

 "gran_3": False,

 "gran_4": False,

 "gran_5": False,

 "throm_1": False,

 "throm_2": False,

 "throm_3": False,

 "throm_4": False,

 "throm_5": False}

 if not cell_type in cancerous:

 return False

 return cancerous[cell_type]

does this cell need transmitters for proliferation

def marrow_cell_trans_dependent(cell_type):

 dependent = {"cp_1": True,

 "cp_2": True,

 "cp_3": True,

 "cp_4": True,

 "cp_5": True,

 "ery_1": True,

 "ery_2": True,

 "ery_3": True,

 "ery_4": True,

 "ery_5": True,

 "gran_1": True,

 "gran_2": True,

 "gran_3": True,

 "gran_4": True,

 "gran_5": True,

 "throm_1": True,

 "throm_2": True,

 "throm_3": True,

 "throm_4": True,

 "throm_5": True}

 if not cell_type in dependent:

 return True

 return dependent[cell_type]

make this cell ankered in the marrow no matter what happens

def marrow_cell_ankered(cell_type):

 ankered = {"cp_1": True,

 "cp_2": False,

 "cp_3": False,

 "cp_4": False,

 105

 "cp_5": False,

 "ery_1": False,

 "ery_2": False,

 "ery_3": False,

 "ery_4": False,

 "ery_5": False,

 "gran_1": False,

 "gran_2": False,

 "gran_3": False,

 "gran_4": False,

 "gran_5": False,

 "throm_1": False,

 "throm_2": False,

 "throm_3": False,

 "throm_4": False,

 "throm_5": False}

 if not cell_type in ankered:

 return False

 return ankered[cell_type]

what kind of blood cells do we have

def all_blood_cell_types():

 return ["ery", "gran", "throm"]

how long do blood cells live

def blood_cell_life_span(cell_type):

 life_span = {"ery": 1200, "gran": 100, "throm": 10}

 # if the requested cell type is not standard, we assume it to be immortal

 if not cell_type in life_span:

 return float('inf')

 return life_span[cell_type]

Statistics

@author Oliver Worm, PSIORI GmbH

class Statistics:

 def __init__(self, blood_stream, bone_marrow):

 self.blood_cell_series = {}

 self.marrow_cell_series = {"total": [], "filled": [], "average_telomere_length": []}

 self.total_transmitter_series = {}

 self.free_transmitter_series = {}

 self.blood_stream = blood_stream

 self.bone_marrow = bone_marrow

 self.time_stats = {}

 def addBloodCellValue(self, tick):

 for cell_type in self.blood_stream.getBloodCellTypes():

 if not cell_type in self.blood_cell_series:

 self.blood_cell_series[cell_type] = [0 for x in range(tick)]

self.blood_cell_series[cell_type].append(self.blood_stream.getBloodCellCount(cell_type))

 def addTransmitterValue(self, tick):

 for trans_type in self.bone_marrow.getTransmitterTypes():

 if not trans_type in self.total_transmitter_series:

 self.total_transmitter_series[trans_type] = [0 for x in range(tick)]

 self.free_transmitter_series[trans_type] = [0 for x in range(tick)]

self.total_transmitter_series[trans_type].append(self.bone_marrow.getTotalTransmitterStrength(

trans_type))

self.free_transmitter_series[trans_type].append(self.bone_marrow.getFreeTransmitterStrength(tr

ans_type))

 def addMarrowCellValue(self, tick):

 self.marrow_cell_series["total"].append(self.bone_marrow.getTotalCellCount())

 self.marrow_cell_series["filled"].append(self.bone_marrow.getFilledCellCount())

self.marrow_cell_series["average_telomere_length"].append(self.bone_marrow.getAverageTelomereL

ength())

 106

 for cell_type in self.bone_marrow.getCellTypes():

 if not cell_type in self.marrow_cell_series:

 self.marrow_cell_series[cell_type] = [0 for x in range(tick)]

self.marrow_cell_series[cell_type].append(self.bone_marrow.getCellCount(cell_type))

 def addTimeValue(self, tick, steps):

 for method, used_time in steps.items():

 if not method in self.time_stats:

 self.time_stats[method] = [0 for x in range(tick)]

 self.time_stats[method].append(used_time)

 def getLastBloodValue(self, cell_type):

 if not cell_type in self.blood_cell_series:

 return 0

 return self.blood_cell_series[cell_type][-1]

 def getLastTotalTransmitterValue(self, trans_type):

 if not trans_type in self.total_transmitter_series:

 return 0

 return self.total_transmitter_series[trans_type][-1]

 def getLastFreeTransmitterValue(self, trans_type):

 if not trans_type in self.free_transmitter_series:

 return 0

 return self.free_transmitter_series[trans_type][-1]

 def getLastTotalMarrowCellValue(self):

 return self.marrow_cell_series["total"][-1]

 def getLastFilledMarrowCellValue(self):

 return self.marrow_cell_series["filled"][-1]

 def getLastAverageTelomereLength(self):

 return self.marrow_cell_series["average_telomere_length"][-1]

 def getLastTimeValue(self, method):

 if not method in self.time_stats:

 return 0

 return self.time_stats[method][-1]

 def getMarrowCellLine(self, type):

 if not type in self.marrow_cell_series:

 return []

 return self.marrow_cell_series[type]

 def getBloodLine(self, type):

 if not type in self.blood_cell_series:

 return []

 return self.blood_cell_series[type]

 def getMarrowCellGroupLine(self, type):

 cell_types = [type + "_" + str(i) for i in range(1, 6)]

 random_cell_type = list(self.bone_marrow.getCellTypes())[0]

 combined_values = [0 for x in range(len(self.getMarrowCellLine(random_cell_type)))]

 for cell_type in cell_types:

 cell_line = self.getMarrowCellLine(cell_type)

 for i in range(len(cell_line)):

 combined_values[i] += cell_line[i]

 return combined_values

12.2 Ridge Regression – Standard Deviations

 grow

th
immu
ne

immorta
lity

inflamma
tion

metast
atis

angiogen
esis

instabil
ity

deathresist
ance

energet
ics

signali
ng

num_st
eps

allCells newCells
Max

currentCe
lls

currentCells
Min

currentCells
Max

deadCells deadCells
Max

overlapping
Cells

hayflickRea
ched

immuneAtta
cked

ccAverag
e

0 2 2 2 2 2 2 2 2 2 2 0 0,063073
667

0,020840
209

0,656254
016

0 0,01539815
5

0,067031
167

0,0291513
22

0,06303430
7

0,17460638
2

0,071786064 0,001884
849

1 2 2 2 2 2 2 2 2 2 4 0 0,063605
547

0,011390
26

0,546542
436

0 0,01174568
7

0,063425
62

0,0186242
81

0,06778434
9

0,03658755
1

0,07412034 0,000735
437

2 2 2 2 2 2 2 2 2 4 2 0 0,027794
401

0,026502
585

0,507086
128

0 0,02091608
4

0,027359
673

0,0238063
2

0,03294683
2

0,16332203
4

0,02891397 0,002548
695

 107

3 2 2 2 2 2 2 2 2 4 4 0 0,045052
782

0,017003
406

0,649999
587

0 0,01857143
6

0,045349
253

0,0328066
9

0,05199274
1

0,04482733
7

0,035965528 0,001473
165

4 2 2 2 2 2 2 2 4 2 2 0 0,037613
909

0,009835
402

0,058253
968

0 0,01984247
7

0,037649
77

0,0121043
66

0,0405416 0,08355973
4

0,038963711 0,003130
555

5 2 2 2 2 2 2 2 4 2 4 0 0,039952
88

0,030269
809

0,505513
131

0 0,02585418
4

0,039234
344

0,0355120
2

0,04418553
7

0,05478434
9

0,053664726 0,000923
822

6 2 2 2 2 2 2 2 4 4 2 0 0,081449
784

0,030654
566

0,550935
883

0 0,02707992
8

0,079611
682

0,0467596
54

0,08895481
8

0,09346209
6

0,083523553 0,002523
295

7 2 2 2 2 2 2 2 4 4 4 0 0,078413
186

0,007319
371

0,298856
599

0 0,00959311
1

0,078470
443

0,0232740
88

0,08239524
4

0,06051381
9

0,071800045 0,001834
802

8 2 2 2 2 2 2 4 2 2 2 0 0,009096
502

0,011327
393

0,376749
96

0 0,00789060
9

0,012256
353

0,0465525
99

0,01049306
1

0,19964538
4

0,007484042 0,002033
586

9 2 2 2 2 2 2 4 2 2 4 0 0,054410
867

0,006996
833

0,523988
546

0 0,01142490
9

0,054264
417

0,0475402 0,05799327
8

0,04788729
5

0,053262137 0,001535
527

10 2 2 2 2 2 2 4 2 4 2 0 0,032055
69

0,012765
053

0,576479
898

0 0,02047389
1

0,033748
121

0,0266198
57

0,03125662
3

0,11337490
8

0,03825885 0,003630
912

11 2 2 2 2 2 2 4 2 4 4 0 0,061198
127

0,017465
731

0,547114
469

0 0,00607451
8

0,060540
546

0,0270669
39

0,06895229
5

0,03221389
3

0,065522475 0,001197
529

12 2 2 2 2 2 2 4 4 2 2 0 0,061860
414

0,014820
477

0,467625
85

0 0,01612321
3

0,064640
468

0,0168622
72

0,06389949
7

0,12431362
8

0,059195685 0,004804
304

13 2 2 2 2 2 2 4 4 2 4 0 0,032836
545

0,027380
839

0,432123
154

0 0,01493380
1

0,032723
69

0,0208056
78

0,03468078
6

0,02741376
1

0,039116878 0,000734
24

14 2 2 2 2 2 2 4 4 4 2 0 0,038841
279

0,029859
273

0,371001
55

0 0,01364441
7

0,039060
817

0,0242044
44

0,04117050
4

0,17807270
5

0,045218376 0,003724
673

15 2 2 2 2 2 4 2 2 2 2 0 0,038562
939

0,021356
353

0,410480
957

0 0,01771451
6

0,040676
525

0,0340975
17

0,03607865
8

0,24321398
9

0,03586515 0,004769
444

16 2 2 2 2 2 4 2 2 2 4 0 0,060365
918

0,014910
225

0,520040
197

0 0,00716996 0,060626
957

0,0226694
13

0,06621906 0,05494437
3

0,064221225 0,001279
671

17 2 2 2 2 2 4 2 2 4 2 0 0,050591
418

0,021367
476

0,416604
932

0 0,01075926 0,050669
656

0,0387365
19

0,05275615
7

0,04193095
4

0,059353454 0,001885
99

18 2 2 2 2 2 4 2 2 4 4 0 0,055452
395

0,021209
588

0,566643
129

0 0,01568875
4

0,055604
02

0,0276200
1

0,05959606
5

0,04875898
8

0,053862555 0,001669
713

19 2 2 2 2 2 4 2 4 2 2 0 0,079072
403

0,025276
654

0,550665
082

0 0,01467997
9

0,080044
71

0,0132551
34

0,08730300
9

0,14286356
6

0,07472012 0,003594
39

20 2 2 2 2 2 4 2 4 2 4 0 0,041748
269

0,026977
641

0,733636
304

0 0,01367217
7

0,041442
752

0,0471409
86

0,04485553
5

0,02510363
4

0,046150806 0,002181
426

21 2 2 2 2 2 4 2 4 4 2 0 0,005412
32

0,022226
258

0,016250
448

0 0,01730752
1

0,005482
76

0,0264072
72

0,00537388
9

0,02871010
1

0,010830751 0,001963
928

22 2 2 2 2 2 4 4 2 2 2 0 0,067314
707

0,011053
324

0,291411
089

0 0,01376493
8

0,069249
998

0,0661127
43

0,07232866
9

0,10951455
2

0,064820994 0,002890
052

23 2 2 2 2 2 4 4 2 2 4 0 0,025120
349

0,010312
889

0,797699
153

0 0,00485160
1

0,024782
788

0,0373387
82

0,02758641
9

0,04250761 0,022551187 0,001173
391

24 2 2 2 2 2 4 4 2 4 2 0 0,031013
305

0,032229
31

0,597199
082

0 0,01486505
5

0,031842
689

0,0374686
89

0,03307970
1

0,18213454
8

0,027607054 0,001624
321

25 2 2 2 2 2 4 4 4 2 2 0 0,046126
849

0,021123
142

0,621406
57

0 0,02609960
6

0,046541
782

0,0517083
68

0,05211007
1

0,10269872
3

0,04866278 0,001642
016

26 2 2 2 2 4 2 2 2 2 2 0 0,023244
409

0,016961
971

0,330933
949

0,04151677
5

0,01232154
5

0,024280
249

0,0546064
59

0,02476980
4

0,12565224
1

0,032378984 0,001854
766

27 2 2 2 2 4 2 2 2 2 4 0 0,031109
851

0,022018
072

0,428035
191

0 0,00848198
1

0,031735
414

0,0442287
52

0,02916263
3

0,07321854
8

0,050787353 0,001737
09

28 2 2 2 2 4 2 2 2 4 2 0 0,013221
851

0,036487
674

0,329480
364

0 0,01954554
5

0,013055
449

0,0406824
22

0,01684524
2

0,09834262 0,013957499 0,001486
102

29 2 2 2 2 4 2 2 2 4 4 0 0,022869
064

0,014537
316

0,344855
401

0 0,01407006
8

0,022084
799

0,0252260
67

0,02849311
7

0,05690132
1

0,028669335 0,000919
946

30 2 2 2 2 4 2 2 4 2 2 0 0,030644
705

0,024524
891

0,276675
252

0 0,01356934
7

0,029074
157

0,0372499
07

0,03934620
5

0,14337801
4

0,037524587 0,001419
755

31 2 2 2 2 4 2 2 4 2 4 0 0,033365
202

0,010341
975

0,358704
851

0 0,00973020
4

0,034530
349

0,0199512
66

0,03743939 0,05186622
3

0,051288157 0,001556
3

32 2 2 2 2 4 2 2 4 4 2 0 0,042465
548

0,034160
852

0,261194
319

0,04151677
5

0,02569946
8

0,043913
428

0,0392419
88

0,04896161
4

0,17039961
8

0,045541612 0,002553
971

33 2 2 2 2 4 2 4 2 2 2 0 0,030478
337

0,020375
575

0,407452
104

0,08806947
6

0,01804775
4

0,029395
59

0,0217391
3

0,03566143
5

0,13947941
3

0,045007252 0,004556
532

34 2 2 2 2 4 2 4 2 2 4 0 0,012945
563

0,031485
779

0,508308
196

0 0,01441415
5

0,012943
27

0,0476720
36

0,01684078
4

0,05107374
8

0,012423429 0,001760
313

35 2 2 2 2 4 2 4 2 4 2 0 0,031438
483

0,023874
169

0,134029
452

0 0,01058222
5

0,031628
983

0,0379525
19

0,02993123
2

0,12580689
7

0,03288558 0,002573
323

36 2 2 2 2 4 2 4 4 2 2 0 0,026625
693

0,015328
883

0,286722
152

0,05342046 0,01559614
7

0,028346
896

0,0183881
32

0,02381486
3

0,16574150
1

0,02916537 0,002499
27

37 2 2 2 2 4 4 2 2 2 2 0 0,034999
061

0,022281
104

0,097225
067

0 0,02106382
4

0,035223
848

0,0457416
46

0,04173715 0,09826897
6

0,034055548 0,004247
604

38 2 2 2 2 4 4 2 2 2 4 0 0,039711
213

0,010811
393

0,368312
198

0 0,00931493
4

0,039422
272

0,0259146
08

0,04723501
6

0,07481370
5

0,041550559 0,002213
236

39 2 2 2 2 4 4 2 2 4 2 0 0,023615
117

0,037069
826

0,232639
595

0 0,01921988
5

0,024282
909

0,0523344
48

0,02046989
1

0,16352556
2

0,029805551 0,003475
181

40 2 2 2 2 4 4 2 4 2 2 0 0,031098
205

0,024729
142

0,272274
437

0,04151677
5

0,02555556
3

0,032587
176

0,0548078
6

0,03305229
4

0,13280007 0,032034842 0,001877
265

41 2 2 2 2 4 4 4 2 2 2 0 0,020196
764

0,038377
957

0,155962
346

0 0,02120711
5

0,020529
336

0,0827750
91

0,02040706
8

0,12068891
9

0,024013781 0,002350
888

42 2 2 2 4 2 2 2 2 2 2 0 0,046484
02

0,019813
183

0,528420
095

0 0,01466792
6

0,048063
738

0,0320857
51

0,05174340
4

0,09203301
3

0,042300732 0,003876
791

43 2 2 2 4 2 2 2 2 2 4 0 0,026826
834

0,016954
624

0,683790
171

0,12892051
3

0,00592933
4

0,026804
891

0,0301136
05

0,02782251
3

0,04962645
8

0,041013842 0,001809
709

44 2 2 2 4 2 2 2 2 4 2 0 0,020360
848

0,017565
993

0,589967
909

0 0,00994303
3

0,020556
465

0,0430985
94

0,01775959
3

0,06518831
7

0,014262707 0,002899
768

45 2 2 2 4 2 2 2 2 4 4 0 0,040285
491

0,022461
19

0,502426
502

0 0,01221631
5

0,041050
226

0,0298314
04

0,04226568
5

0,04308485
8

0,032654332 0,001673
144

46 2 2 2 4 2 2 2 4 2 2 0 0,039068
536

0,018259
13

0,382809
593

0 0,00934310
3

0,038050
721

0,0291024
11

0,04264992
2

0,11129117
9

0,042173953 0,000769
849

47 2 2 2 4 2 2 2 4 2 4 0 0,057239
32

0,019456
117

0,804117
788

0 0,01223193
1

0,056841
261

0,0445330
66

0,06029744
6

0,04975175
7

0,074035969 0,001293
447

 108

48 2 2 2 4 2 2 2 4 4 2 0 0,038259
757

0,030641
216

0,365597
739

0 0,02452503
6

0,039224
775

0,0288217
48

0,04133130
6

0,04907759
1

0,046043841 0,001806
373

49 2 2 2 4 2 2 4 2 2 2 0 0,025300
459

0,042491
498

0,461203
738

0 0,02582237 0,027804
699

0,0342642
96

0,02973076
6

0,06244876
4

0,024582791 0,003352
396

50 2 2 2 4 2 2 4 2 2 4 0 0,042796
819

0,019024
827

0,206804
779

0 0,01461500
9

0,042328
372

0,0245565
11

0,04291203 0,04528770
7

0,051529027 0,001162
349

51 2 2 2 4 2 2 4 2 4 2 0 0,066778
105

0,014110
204

0,743055
377

0 0,01351947
2

0,065095
566

0,0302008
4

0,07054063
7

0,03628298
6

0,066695396 0,003347
282

52 2 2 2 4 2 2 4 4 2 2 0 0,030816
946

0,040630
567

0,522085
138

0 0,03294335
1

0,031408
452

0,0525626 0,03202636
1

0,06147227 0,026328879 0,003008
8

53 2 2 2 4 2 4 2 2 2 2 0 0,036079
416

0,026523
795

0,570959
938

0 0,01582523
3

0,037960
97

0,0310322
54

0,03949384
1

0,11016895
6

0,033273793 0,002774
272

54 2 2 2 4 2 4 2 2 2 4 0 0,040483
045

0,009625
01

0,770077
19

0 0,00722590
7

0,040129
826

0,0279030
83

0,04159804
5

0,05094547
4

0,04420217 0,001722
045

55 2 2 2 4 2 4 2 2 4 2 0 0,032627
35

0,022736
209

0,372409
484

0 0,01420727
7

0,035134
092

0,0381000
26

0,03545589
1

0,08389976 0,048560238 0,001437
934

56 2 2 2 4 2 4 2 4 2 2 0 0,037069
308

0,011088
33

0,522326
811

0 0,00729709
7

0,035918
027

0,0234950
12

0,04088784
6

0,05914317
3

0,022085921 0,002874
253

57 2 2 2 4 2 4 4 2 2 2 0 0,056630
995

0,031028
715

0,230042
289

0 0,01397484
2

0,056285
58

0,0226999
98

0,05769977
2

0,08304757
4

0,053041104 0,001656
51

58 2 2 2 4 4 2 2 2 2 2 0 0,015166
366

0,023496
395

0,108299
339

0 0,01775482
8

0,014754
297

0,0302466
81

0,01717967
3

0,09325687
1

0,016246634 0,002402
74

59 2 2 2 4 4 2 2 2 2 4 0 0,024259
134

0,020700
406

0,572715
124

0 0,01447090
6

0,024147
646

0,0202440
3

0,02499539
8

0,05366701
1

0,035719794 0,000962
534

60 2 2 2 4 4 2 2 2 4 2 0 0,029618
643

0,038367
051

0,195591
22

0 0,01439241
7

0,028828
591

0,0435009
53

0,02769650
1

0,09024465
6

0,036569512 0,003017
212

61 2 2 2 4 4 2 2 4 2 2 0 0,035409
632

0,023068
719

0,249472
216

0 0,01279058
4

0,034389
834

0,0202178
96

0,04102811
2

0,06322603
3

0,02894415 0,002686
287

62 2 2 2 4 4 2 4 2 2 2 0 0,043613
335

0,022172
648

0,256118
662

0 0,02523020
6

0,042984
339

0,0478909
65

0,04486302
2

0,09599204
2

0,045569594 0,002481
078

63 2 2 2 4 4 4 2 2 2 2 0 0,025024
681

0,017819
455

0,170225
078

0 0,00779233 0,025125
679

0,0390671
23

0,03092830
7

0,06860253
7

0,040246231 0,002632
892

64 2 2 4 2 2 2 2 2 2 2 0 0,029283
995

0,019208
841

0,026649
512

0 0,01985240
8

0,029439
006

0,0133350
43

0,02893807
8

 0,025974518 0,002471
88

65 2 2 4 2 2 2 2 2 2 4 0 0,002359
197

0,010284
033

0,014755
622

0 0,00675525
8

0,002375
381

0,0366952
4

0,00260743
9

 0,022046905 0,001294
483

66 2 2 4 2 2 2 2 2 4 2 0 0,014075
015

0,010770
411

0,037665
804

0 0,01104177
3

0,014012
516

0,0230625
58

0,01350092
6

 0,014798557 0,001695
155

67 2 2 4 2 2 2 2 2 4 4 0 0,003994
875

0,009173
499

0,020456
491

0 0,00519777 0,004006
666

0,0253429
84

0,00382710
2

 0,011966904 0,000658
022

68 2 2 4 2 2 2 2 4 2 2 0 0,016251
586

0,016127
614

0,037526
391

0 0,01213261
1

0,016193
934

0,0299036
52

0,01574695
6

 0,018848552 0,001793
494

69 2 2 4 2 2 2 2 4 2 4 0 0,004090
142

0,014578
038

0,013469
769

0 0,00696392
2

0,004074
561

0,0101822
06

0,00419033
1

 0,014524979 0,001295
234

70 2 2 4 2 2 2 2 4 4 2 0 0,013927
242

0,009679
919

0,033584
778

0 0,00946624
2

0,014122
813

0,0520570
96

0,01415972
2

 0,024395393 0,001475
125

71 2 2 4 2 2 2 4 2 2 2 0 0,010386
336

0,008329
237

0,023689
461

0 0,00600828
4

0,010438
001

0,0186723
6

0,01023622
1

 0,020660928 0,002458
685

72 2 2 4 2 2 2 4 2 2 4 0 0,002185
443

0,007431
928

0,013415
697

0 0,00616386
5

0,002214
061

0,0153287
63

0,00251353 0,012576113 0,000580
249

73 2 2 4 2 2 2 4 2 4 2 0 0,019189
242

0,020522
619

0,022618
338

0 0,00708632
6

0,019200
504

0,0166656
15

0,01905490
4

 0,025417928 0,002545
61

74 2 2 4 2 2 2 4 4 2 2 0 0,013919
496

0,027294
183

0,015761
308

0 0,02052918
4

0,014215
445

0,0207261
45

0,01377843
6

 0,016946301 0,001072
564

75 2 2 4 2 2 4 2 2 2 2 0 0,008581
756

0,021756
109

0,018078
61

0 0,01232606 0,008737
423

0,0247108
25

0,00860336
5

 0,023276294 0,002099
476

76 2 2 4 2 2 4 2 2 2 4 0 0,003578
797

0,012204
8

0,021001
943

0 0,00833010
6

0,003618
183

0,0194617
91

0,00339752
9

 0,014144183 0,000882
317

77 2 2 4 2 2 4 2 2 4 2 0 0,009656
414

0,014970
272

0,026140
713

0 0,00738090
9

0,009834
592

0,0397402
16

0,00890848
3

 0,024775461 0,002123
663

78 2 2 4 2 2 4 2 4 2 2 0 0,022539
136

0,020667
67

0,016014
402

0 0,01110103
1

0,022631
916

0,0339455
78

0,02227475
2

 0,028248229 0,001016
116

79 2 2 4 2 2 4 4 2 2 2 0 0,013208
446

0,008545
479

0,036643
771

0 0,01086663
7

0,013175
092

0,0300231
37

0,01329507
7

 0,016532403 0,002587
803

80 2 2 4 2 4 2 2 2 2 2 0 0,012125
93

0,016775
444

0,021046
439

0,04151677
5

0,01688925
6

0,012201
861

0,0399942
54

0,01184076
7

 0,030808014 0,003225
293

81 2 2 4 2 4 2 2 2 2 4 0 0,004824
464

0,014052
402

0,028676
128

0 0,00742735 0,004835
62

0,0142230
31

0,00499639
9

 0,021522937 0,000954
659

82 2 2 4 2 4 2 2 2 4 2 0 0,018123
217

0,023532
989

0,023744
98

0 0,01774337
6

0,018357
578

0,0392558
86

0,01806678 0,020965152 0,002072
622

83 2 2 4 2 4 2 2 4 2 2 0 0,010988
046

0,014927
761

0,037805
593

0,04151677
5

0,01075434
7

0,011148
378

0,0304543
48

0,01270663
3

 0,021313729 0,001769
172

84 2 2 4 2 4 2 4 2 2 2 0 0,012384
361

0,015407
762

0,058677
062

0 0,02044151
1

0,012321
969

0,0562925
81

0,01177163
7

 0,016190383 0,002126
758

85 2 2 4 2 4 4 2 2 2 2 0 0,010113
555

0,014490
523

0,014804
999

0 0,01847989
5

0,010263
946

0,0354597
61

0,00972959 0,015918854 0,002657
96

86 2 2 4 4 2 2 2 2 2 2 0 0,007602
073

0,010719
585

0,016911
475

0 0,01745929
4

0,007633
988

0,0156288
31

0,00739359
7

 0,017763534 0,002466
392

87 2 2 4 4 2 2 2 2 2 4 0 0,003428
044

0,008717
793

0,014273
715

0 0,00328243
3

0,003441
985

0,0134143
02

0,00343578
6

 0,01092098 0,000839
196

88 2 2 4 4 2 2 2 2 4 2 0 0,017900
656

0,013454
204

0,017488
595

0 0,01473045
7

0,018034
39

0,0406793
81

0,01792103 0,016213698 0,002210
778

89 2 2 4 4 2 2 2 4 2 2 0 0,006544
71

0,015072
815

0,023151
496

0 0,00916488
5

0,006553
235

0,0179968
3

0,00661318
7

 0,011401354 0,001529
82

90 2 2 4 4 2 2 4 2 2 2 0 0,010275
175

0,015956
07

0,015866
106

0 0,00857139
9

0,010368
102

0,0276560
04

0,01045527
2

 0,017223752 0,001822
572

91 2 2 4 4 2 4 2 2 2 2 0 0,019640
756

0,016736
511

0,016292
937

0 0,00494264
7

0,019815
746

0,0415301
63

0,01956567
7

 0,032504715 0,001518
798

92 2 2 4 4 4 2 2 2 2 2 0 0,010205
347

0,020374
865

0,026683
328

0,04151677
5

0,02417055
1

0,010131
56

0,0350436
82

0,01030269
3

 0,0156656 0,001324
735

 109

93 2 4 2 2 2 2 2 2 2 2 0 0,033366
148

0,021041
403

0,842279
106

0 0,01540432
4

0,034135
849

0,0287998
11

0,03392699
8

0,18878531
9

0,067679445 0,004285
292

94 2 4 2 2 2 2 2 2 2 4 0 0,042272
668

0,015152
971

0,348498
549

0 0,01734440
3

0,043293
588

0,0358756
88

0,04441344
4

0,06200731
7

0,104298641 0,001585
166

95 2 4 2 2 2 2 2 2 4 2 0 0,057096
776

0,023664
926

0,292644
531

0 0,01607856
3

0,056981
561

0,0437829
35

0,06463316
8

0,07603649
8

0,076251871 0,003681
316

96 2 4 2 2 2 2 2 2 4 4 0 0,025474
313

0,019311
225

0,586942
433

0 0,01263834
7

0,025270
077

0,0149125
66

0,02846087
2

0,03663092
7

0,179853107 0,000391
994

97 2 4 2 2 2 2 2 4 2 2 0 0,062775
127

0,022453
241

0,394072
838

0 0,01203847
1

0,065271
536

0,0257887
61

0,06502596
8

0,19048465
2

0,088222937 0,002853
403

98 2 4 2 2 2 2 2 4 2 4 0 0,049471
27

0,012357
955

0,443240
588

0 0,00600757
3

0,050255
44

0,0181382
47

0,05225696 0,04033068
2

0,132802347 0,000928
257

99 2 4 2 2 2 2 2 4 4 2 0 0,081360
026

0,022291
41

0,273761
827

0 0,00884548
2

0,081232
47

0,0348458
42

0,08567025
4

0,14072648
1

0,093045996 0,001559
563

10
0

2 4 2 2 2 2 4 2 2 2 0 0,089561
158

0,023417
135

0,585182
73

0 0,01751597
8

0,091771
429

0,0062211
99

0,09668055
3

0,23850899
2

0,081291079 0,004709
489

10
1

2 4 2 2 2 2 4 2 2 4 0 0,028007
607

0,020263
208

0,425472
851

0 0,01580655
1

0,027616
633

0,0297961
74

0,03118671
7

0,04221002
9

0,077114613 0,001021
071

10
2

2 4 2 2 2 2 4 2 4 2 0 0,036213
695

0,015624
718

0,195208
266

0 0,00804547 0,035367
606

0,0358284
99

0,04091194
1

0,08144527
8

0,047258457 0,003896
434

10
3

2 4 2 2 2 2 4 4 2 2 0 0,040653
338

0,016109
449

0,372330
684

0 0,01165368
7

0,039234
298

0,0441376
18

0,04773609
2

0,15280974
2

0,050509651 0,002592
224

10
4

2 4 2 2 2 4 2 2 2 2 0 0,085745
613

0,016331
857

0,423490
442

0 0,02227107
4

0,087794
214

0,0484986
65

0,09129399
5

0,25008454
1

0,0792951 0,002896
432

10
5

2 4 2 2 2 4 2 2 2 4 0 0,031634
207

0,019977
434

0,410108
106

0 0,02014264
8

0,032719
003

0,0463338
25

0,03287839
6

0,03932382
8

0,111573711 0,000900
981

10
6

2 4 2 2 2 4 2 2 4 2 0 0,020147
042

0,030138
616

0,268065
768

0 0,01108796
9

0,021702
366

0,0721110
26

0,02352173 0,10766865
3

0,053586505 0,002478
477

10
7

2 4 2 2 2 4 2 4 2 2 0 0,034019
126

0,021621
889

0,421924
874

0 0,01031368
7

0,034027
949

0,0120736
32

0,03587380
1

0,11501306
6

0,049343135 0,001852
483

10
8

2 4 2 2 2 4 4 2 2 2 0 0,075676
744

0,028327
574

0,493512
533

0 0,01692356
1

0,073845
181

0,0377871
77

0,08070480
4

0,07828818
8

0,093015502 0,002824
392

10
9

2 4 2 2 4 2 2 2 2 2 0 0,054553
842

0,029065
572

0,130814
96

0 0,01675891
2

0,056288
179

0,0434372
24

0,05855822
9

0,12606039 0,067860785 0,001784
654

11
0

2 4 2 2 4 2 2 2 2 4 0 0,028279
647

0,020815
058

0,386759
71

0 0,00743835
3

0,028268
922

0,0258028
09

0,03178561 0,05301172
8

0,10265739 0,001224
104

11
1

2 4 2 2 4 2 2 2 4 2 0 0,013221
221

0,028233
601

0,244977
613

0 0,01429445
4

0,015105
137

0,0435213
82

0,01299214 0,07533939
9

0,043053077 0,002593
206

11
2

2 4 2 2 4 2 2 4 2 2 0 0,014693
725

0,021703
709

0,405634
462

0,04151677
5

0,01579889
1

0,013754
331

0,0360005
44

0,01903414
3

0,15145390
2

0,05298181 0,002940
471

11
3

2 4 2 2 4 2 4 2 2 2 0 0,017010
509

0,023597
838

0,360909
418

0 0,01726477
1

0,016270
964

0,0270133
18

0,02145686
5

0,15478351
4

0,030773339 0,002269
474

11
4

2 4 2 2 4 4 2 2 2 2 0 0,044075
996

0,010642
632

0,245473
636

0 0,01608047
6

0,045044
825

0,0418518
16

0,04903766
5

0,07103052
7

0,069891657 0,001483
947

11
5

2 4 2 4 2 2 2 2 2 2 0 0,055561
196

0,015128
892

0,383346
223

0 0,00761266
3

0,056228
193

0,0290340
35

0,06291279
4

0,02989328
5

0,076329916 0,002614
05

11
6

2 4 2 4 2 2 2 2 2 4 0 0,025737
661

0,013652
546

0,912948
803

0 0,01452654
2

0,025006
587

0,0427105
39

0,03041031 0,03390652
7

0,179672745 0,000724
353

11
7

2 4 2 4 2 2 2 2 4 2 0 0,045689
485

0,017996
496

0,412421
404

0 0,00608158 0,045194
611

0,0340731
53

0,04822120
4

0,04965818
7

0,056879992 0,001680
786

11
8

2 4 2 4 2 2 2 4 2 2 0 0,041732
878

0,022165
727

0,241078
692

0 0,00785959
1

0,043062
949

0,0487345
23

0,04629384
6

0,07329548
7

0,037642899 0,002771
718

11
9

2 4 2 4 2 2 4 2 2 2 0 0,021009
643

0,019677
38

0,323447
856

0 0,00434874
3

0,020864
457

0,0241903
29

0,02261607
5

0,07638201
5

0,042767043 0,002967
746

12
0

2 4 2 4 2 4 2 2 2 2 0 0,088420
736

0,018431
022

0,204814
68

0 0,01336977
4

0,089306
779

0,0441960
26

0,08889180
2

0,18547972
4

0,073752484 0,001364
144

12
1

2 4 2 4 4 2 2 2 2 2 0 0,044432
264

0,021576
545

0,418045
779

0 0,01741501
7

0,042068
903

0,0545704
93

0,05220551
1

0,12243168
8

0,05501616 0,002873
631

12
2

2 4 4 2 2 2 2 2 2 2 0 0,019038
019

0,011026
11

0,019785
444

0 0,01198125
8

0,019094
459

0,0191220
5

0,01831863
5

 0,03525143 0,001596
148

12
3

2 4 4 2 2 2 2 2 2 4 0 0,003563
63

0,008845
153

0,016152
867

0 0,01039413 0,003559
031

0,0101192
89

0,00357524
9

 0,095663136 0,000653
514

12
4

2 4 4 2 2 2 2 2 4 2 0 0,013807
07

0,019409
507

0,016594
683

0 0,01191264
2

0,013861
192

0,0190295
24

0,01353338
2

 0,052315249 0,002065
684

12
5

2 4 4 2 2 2 2 4 2 2 0 0,023290
941

0,021510
764

0,013340
834

0 0,00568624
1

0,023563
452

0,0359173
52

0,02329672
3

 0,028576646 0,002830
085

12
6

2 4 4 2 2 2 4 2 2 2 0 0,016759
482

0,018787
534

0,024303
523

0 0,00554132
9

0,016996
355

0,0127400
77

0,01599379
3

 0,027401847 0,001608
566

12
7

2 4 4 2 2 4 2 2 2 2 0 0,015794
549

0,018407
266

0,022343
076

0 0,00592026
6

0,016177
199

0,0147686
15

0,01594087
3

 0,032522876 0,002976
726

12
8

2 4 4 2 4 2 2 2 2 2 0 0,013116
782

0,024831
206

0,035232
395

0 0,00542995
4

0,013199
933

0,0440989
14

0,01294633 0,045477474 0,001314
961

12
9

2 4 4 4 2 2 2 2 2 2 0 0,011081
784

0,010975
466

0,014654
457

0 0,00860047
2

0,011257
017

0,0290190
5

0,01099846
7

 0,038428468 0,002635
1

13
0

4 2 2 2 2 2 2 2 2 2 0 0,037963
24

0,011101
677

0,559998
764

0,47864058
4

0,00780486
4

0,039936
545

0,0395137
32

0,03752148
6

0,18894315 0,047240764 0,004673
615

13
1

4 2 2 2 2 2 2 2 2 4 0 0,252834
28

0,008493
08

1,160266
243

0,38729833
5

0,00413378
3

0,251714
89

0,0294035
84

0,25103419
2

0,27405187
5

0,240713131 0,048700
314

13
2

4 2 2 2 2 2 2 2 4 2 0 0,059924
96

0,014110
103

0,784658
768

0,59287219
8

0,01079528
8

0,060794
314

0,0370230
6

0,06617996 0,23611753
7

0,052898096 0,004391
226

13
3

4 2 2 2 2 2 2 2 4 4 0 0,042566
941

0,009309
815

0,682578
384

0,36331804
2

0,00469490
8

0,042049
364

0,0358846
55

0,04452699
5

0,05368800
8

0,061834263 0,001902
608

13
4

4 2 2 2 2 2 2 4 2 2 0 0,058193
173

0,014916
454

0,294985
061

0,2718553 0,01238194
8

0,056696
47

0,0268703
06

0,06183340
5

0,13182177
3

0,06558006 0,002492
372

13
5

4 2 2 2 2 2 2 4 2 4 0 0,222507
397

0,009088
502

1,166359
772

0,85933784
9

0,01336018
8

0,222395
616

0,0229280
78

0,22197267
7

0,23676533
9

0,222139894 0,047345
811

13
6

4 2 2 2 2 2 2 4 4 2 0 0,045282
567

0,011032
329

0,854187
285

0,37757191
8

0,00734164
7

0,047547
041

0,0368593
33

0,04666579
9

0,18444632 0,046841921 0,002905
417

13
7

4 2 2 2 2 2 4 2 2 2 0 0,247489
823

0,010161
561

0,606880
326

0,82945765
4

0,01011405
4

0,246125
332

0,0223933
94

0,24552002
7

0,32531806 0,244242593 0,291361
537

 110

13
8

4 2 2 2 2 2 4 2 2 4 0 0,048935
231

0,006109
485

0,583380
153

0,53977590
2

0,00701582
8

0,049412
225

0,0054924
06

0,05178175
2

0,05358428
4

0,063749713 0,001346
173

13
9

4 2 2 2 2 2 4 2 4 2 0 0,036292
228

0,011263
759

0,447999
397

0,45254673
9

0,00692522
4

0,037100
955

0,0303716
13

0,03639593
8

0,22921997
7

0,045307913 0,004398
688

14
0

4 2 2 2 2 2 4 4 2 2 0 0,052595
55

0,009041
619

0,232676
85

0,64117946
9

0,00887159
4

0,052082
198

0,0308963
78

0,05502407 0,15316561
7

0,058412883 0,003409
411

14
1

4 2 2 2 2 4 2 2 2 2 0 0,036571
277

0,009987
626

0,765528
367

0,53166405
4

0,01100076
5

0,036456
905

0,0524723
9

0,03473735
3

0,17800805 0,032727366 0,004159
223

14
2

4 2 2 2 2 4 2 2 2 4 0 0,084375
505

0,008311
74

0,865772
584

0,65969401
6

0,00961036
9

0,084119
553

0,0313202
07

0,08260219
3

0,12351879 0,096558939 0,024731
141

14
3

4 2 2 2 2 4 2 2 4 2 0 0,046288
532

0,006131
362

0,126251
895

0,36829456
5

0,00656456
7

0,046719
858

0,0427875
8

0,04904145
7

0,13329306
9

0,051934069 0,002783
8

14
4

4 2 2 2 2 4 2 4 2 2 0 0,049492
868

0,004420
26

0,179365
382

0,39275094
9

0,00861013
9

0,048824
63

0,0163603
52

0,05195610
5

0,13857097
7

0,053933325 0,002891
77

14
5

4 2 2 2 2 4 4 2 2 2 0 0,034224
954

0,004964
183

0,369728
519

0,27280545
4

0,00580018
8

0,033048
039

0,0231888
66

0,03538036
4

0,14603549
1

0,023436043 0,002903
027

14
6

4 2 2 2 4 2 2 2 2 2 0 0,274216
823

0,010052
273

0,600253
4

0,49371044
1

0,00814629
7

0,272862
349

0,0298153
51

0,27279494
5

0,45548635
5

0,269645645 0,291190
507

14
7

4 2 2 2 4 2 2 2 2 4 0 0,046406
441

0,008175
542

0,384134
387

0,72779633
1

0,00667025 0,047174
409

0,0378885
9

0,0476769 0,12854692
6

0,045660514 0,003430
66

14
8

4 2 2 2 4 2 2 2 4 2 0 0,024087
15

0,018042
898

0,128123
427

0,22342784
1

0,01737375 0,024696
271

0,0329482
84

0,02494566
2

0,24390557
6

0,03516986 0,002264
357

14
9

4 2 2 2 4 2 2 4 2 2 0 0,273037
984

0,007427
783

0,500960
623

0,91893658
3

0,00920574
6

0,271639
675

0,0615379
81

0,27115783
3

0,35058577
9

0,278955522 0,291695
861

15
0

4 2 2 2 4 2 4 2 2 2 0 0,041128
151

0,016040
109

0,233415
124

0,45247618 0,02027615
7

0,041158
24

0,0763076
45

0,04775215
4

0,22008218
9

0,0356607 0,002936
518

15
1

4 2 2 2 4 4 2 2 2 2 0 0,021477
382

0,005720
752

0,257386
471

0,23108393
8

0,00842128
9

0,021194
149

0,0647890
03

0,02198743
1

0,09620352
6

0,027105857 0,002923
126

15
2

4 2 2 4 2 2 2 2 2 2 0 0,028220
536

0,003721
429

0,383316
091

0,57142857
1

0,00662045
6

0,027641
872

0,0364911
83

0,02506866
3

0,11430092
3

0,045906768 0,005782
531

15
3

4 2 2 4 2 2 2 2 2 4 0 0,061619
794

0,003711
104

0,976174
041

0,75099933
4

0,00273548 0,061074
355

0,0200371
33

0,06215707
9

0,05148982
2

0,08633155 0,012346
577

15
4

4 2 2 4 2 2 2 2 4 2 0 0,031799
405

0,013056
007

0,477294
872

0,73786478
7

0,01301764
2

0,033380
388

0,0255999
16

0,03490117
1

0,09545909 0,048781082 0,004055
284

15
5

4 2 2 4 2 2 2 4 2 2 0 0,016951
228

0,008566
641

0,896042
963

0,72690787
7

0,00862754
4

0,017683
444

0,0204264
44

0,02089223
6

0,08124545
2

0,029009238 0,002443
299

15
6

4 2 2 4 2 2 4 2 2 2 0 0,025012
578

0,018084
019

1,020245
016

0,64523370
2

0,01471089
1

0,025806
034

0,0163394
76

0,02693973
4

0,08129795
2

0,015415532 0,003279
846

15
7

4 2 2 4 2 4 2 2 2 2 0 0,040423
572

0,005136
535

0,340280
568

0,68611925 0,00698600
5

0,040801
564

0,0406238
44

0,04179679
4

0,06157895
4

0,032510384 0,005033
84

15
8

4 2 2 4 4 2 2 2 2 2 0 0,008454
297

0,014267
169

0,637720
033

0,74877631
7

0,00878391 0,009232
215

0,0570159
22

0,01372144
6

0,14054055
3

0,023479116 0,003211
167

15
9

4 2 4 2 2 2 2 2 2 2 0 0,005434
971

0,006978
415

0,010676
406

0 0,00430201
7

0,005488
243

0,0148121
69

0,00572606
2

 0,013439328 0,000496
297

16
0

4 2 4 2 2 2 2 2 2 4 0 0,001702
445

0,003374
32

0,019029
371

0 0,00391040
6

0,001709
29

0,0104343
44

0,00176738
3

 0,020396787 0,000388
359

16
1

4 2 4 2 2 2 2 2 4 2 0 0,007843
023

0,005602
69

0,023770
036

0 0,01060141
4

0,007989
493

0,0104891
35

0,00840914
3

 0,009727308 0,001317
299

16
2

4 2 4 2 2 2 2 4 2 2 0 0,006111
422

0,008491
417

0,011000
331

0 0,00314813
7

0,006192
349

0,0203383
8

0,00598555
7

 0,021601531 0,001598
438

16
3

4 2 4 2 2 2 4 2 2 2 0 0,009575
254

0,007771
563

0,019042
84

0 0,00443110
8

0,009558
559

0,0189399
6

0,00955396 0,01400054 0,001153
959

16
4

4 2 4 2 2 4 2 2 2 2 0 0,007194
854

0,005226
73

0,010081
133

0 0,00606056
6

0,007233
371

0,0113378
86

0,00715831
7

 0,015094994 0,000825
452

16
5

4 2 4 2 4 2 2 2 2 2 0 0,009176
976

0,009495
217

0,021323
761

0,04151677
5

0,00822310
2

0,009137
585

0,0272623
89

0,00863146
1

 0,021633866 0,001392
62

16
6

4 2 4 4 2 2 2 2 2 2 0 0,006671
421

0,008412
531

0,017721 0 0,00513493
1

0,006710
996

0,0176554
38

0,00688759
6

 0,021129426 0,000907
165

16
7

4 4 2 2 2 2 2 2 2 2 0 0,118000
091

0,013709
772

0,552056
572

0,75894663
8

0,00931892
6

0,116436
24

0,0275561
96

0,12035773
6

0,14500619
5

0,119251102 0,111154
866

16
8

4 4 2 2 2 2 2 2 2 4 0 0,046361
107

0,011179
272

0,338176
61

0,38449967
5

0,01335758
2

0,046707
236

0,0342031
33

0,04806819
4

0,02690602 0,693997589 0,001212
804

16
9

4 4 2 2 2 2 2 2 4 2 0 0,042195
939

0,005886
408

0,421047
966

0,51044998
9

0,00870291
3

0,042482
887

0,0361414
18

0,04375639
3

0,12892283
6

0,067115328 0,005446
544

17
0

4 4 2 2 2 2 2 4 2 2 0 0,038373
752

0,006087
836

0,623792
018

0,44528616 0,00498251
6

0,041786
259

0,0285535
48

0,03804018
5

0,22082393
4

0,062183551 0,003806
701

17
1

4 4 2 2 2 2 4 2 2 2 0 0,048824
603

0,008461
082

0,802234
162

0,38729833
5

0,01306759 0,047908
955

0,0203713
4

0,05311775
5

0,12720955
9

0,051659905 0,002807
723

17
2

4 4 2 2 2 4 2 2 2 2 0 0,038123
046

0,006432
585

0,259400
858

0,26058401
5

0,01245460
2

0,037695
424

0,0356306
83

0,04320596
6

0,08853511
6

0,054963887 0,002136
86

17
3

4 4 2 2 4 2 2 2 2 2 0 0,281624
356

0,015963
485

0,580725
307

0,62661365
5

0,01069646
2

0,280711
633

0,0385132
89

0,28005029
8

0,35468047
6

0,314509495 0,289193
876

17
4

4 4 2 4 2 2 2 2 2 2 0 0,030916
842

0,009880
461

0,509336
199

0,54297744
8

0,00936162
9

0,031067
299

0,0165849
54

0,03138235 0,05272734
7

0,082397072 0,002635
915

17
5

4 4 4 2 2 2 2 2 2 2 0 0,008151
812

0,008034
581

0,021071
025

0 0,00689526
3

0,008139
66

0,0132168
16

0,00795121
6

 0,022723263 0,001856
461

 0,040776
419

0,016884
31

0,342335
487

0,11621036
8

0,01229671
4

0,040981
072

0,0319563
64

0,04273116
6

0,11432173
6

0,056041052 0,010144
538

Table 10 Standard Deviations as Fraction of Mean (Georg & Lau, 2016)

