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Abstract 

Under a whole system scale analysis, hydrological modelling of large river basins is critical 

to understand the behaviour of regional phenomena and cumulative impacts. Many 

hydrologic models contain parameters that are difficult to measure or do not have a direct 

physical interpretation, so it is necessary to estimate these model parameters using a 

calibration procedure. However, observations for calibration and validation are only 

available for specific locations and more formal procedures are necessary to regionalize 

model parameters in areas with limited or without data. In this paper, a methodological 

framework for the spatial and temporal calibration of a large river basin hydrological model 

is proposed that uses a cluster method to group sub-catchments of the macro basin model, 

based on its morphometric characteristics, under the assumption that catchments in the 

same group share the same parameter values in the model. The methodology was tested 

in a Magdalena-Cauca (Colombia) macro basin hydrological model developed in the Water 

Evaluation and Planning (WEAP) software (Stockholm Environmental Institute, Stockholm, 

Sweden). The results show a Nash-Sutcliffe efficiency coefficient between 0.45 and 0.83 in 

calibration and between 0.43 and 0.83 in validation. 

Keywords: Large river basin, Hydrological models, Calibration, Cluster method. 
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1. Introduction 

Studies aimed to understand the hydrological response at the system level imply a 

significant change in the scale of analysis with a broader comprehension of the phenomena 

and events that occur in the basin. Hydrological modelling is presented as a tool of great 

importance in this type of analysis for the comprehension of the integral behaviour of the 

macro basin. 

As pointed out by Wagener et al. (2001), most hydrological models are classified as 

conceptual. This implies that the model parameters often do not have a direct physical 

interpretation and therefore cannot be measured in the field. For some other models, it is 

possible that their parameters have physical interpretation, however, for many cases, there 

is no data measured in the field that allows their calculation. Therefore, for most 

hydrological model structures currently used, the model parameters must be estimated 

using a calibration procedure that allows to have a set of parameters that brings an 

acceptable level of agreement between the measured system output and the model 

response (Wagener et al., 2001). 

For hydrological models in large river basins, observations for calibration and validation of 

the model are often only available at a subset of sites where the model is applied. For sites 

without observations, the parameters must be determined based on global parameters 

(Engeland et al., 2001). The model can be calibrated on some of the available data and then 

validated on data from period of times not used (Klemes, 1986). As the parameters can be 

regionalised to relate them to catchment characteristics (Johansson, 1994), a second 

validation can be performed on data that is available in catchments in the same region, but 

not used in the calibration. 

The previous procedure presents big challenges in terms of the calibration of a macro basin 

model, including best practices for regionalization of the units of the model and a clearer 

way to transfer the calibrated parameters in specific sites of the model to other sites that 
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were not used in the calibration process. This paper proposes a methodological framework 

for the calibration of a large river basin hydrological model that allows the identification of 

similar units (sub-catchments) in the macro model, in which each group of these similar 

units share like-parameter values. The methodology also uses objective calibration methods 

and the Generalised Likelihood Uncertainty Estimation (GLUE) method (Beven and Binley, 

1992). 
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2. Proposed Methodological Framework 

The proposed methodological procedure is summarized in Figure 1. 

 
 

 
Figure 1. Proposed methodological procedure for calibration of large river basin hydrological 

models 
 

  



 
 
 
 
 

  
September 2021                                          Volume 8, Issue 4 
 
As shown above, the methodology consists of 8 main steps that are described as follows: 
 

1. Calculate morphometric parameters 

The first step in the proposed procedure is to calculate a set of morphometric parameters 

for each sub-catchment in the model. To have an extensive characterization of the units of 

the model, we recommend at least the calculation of the 28 morphometric variables that 

are presented in Table 1, described as Faris (2015). 

 

Table 1. Description of morphometric parameters proposed for the sub-catchment 
characterization (Adapted from Faris, 2015) 

ID 
Morphometric 

Parameter Formula Author 

1 Total basin area (A) (Km2) Projected area enclosed by basin boundary Schumm 
(1956) 

2 Total basin perimeter (P) (Km) 
Length of horizontal projection of basin water 

divide 
Schumm 

(1956) 

3 Basin length (Lb) (Km) Distance from outlet to farthest point on basin 
boundary 

Schumm 
(1956) 

4 Fitness ratio (Rf) 𝑅𝑓 =
𝐿𝑏

𝑃
 

Melton 
(1957) 

5 Form factor (Ff) 𝐹𝑓 =
𝐴

𝐿𝑏ଶ
 

Horton 
(1932) 

6 Shape factor (Sf) 𝑆𝑓 =
𝐿𝑏ଶ

𝐴
=

1

𝐹𝑓
 

Strahler 
(1957) 

7 Relative perimeter (Rp) 𝑅𝑝 =
𝐴

𝑃
 

Schumm 
(1956) 

8 Length area relation (Lar) 𝐿𝑎𝑟 = 1.4𝐴଴.଺ Hack (1957) 
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ID Morphometric 
Parameter 

Formula Author 

9 Rotundity coefficient (Rc) 𝑅𝑐 =
𝐿𝑏ଶ𝜋

4𝐴
 

Strahler 
(1957) 

10 Mean basin width (Wb) 𝑊𝑏 =
𝐴

𝐿𝑏
 

Horton 
(1932) 

11 Drainage texture (Dt) 𝐷𝑡 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑟𝑒𝑎𝑚 𝑜𝑟𝑑𝑒𝑟𝑠 (𝑁𝑢)

𝑃
 

Horton 
(1945) 

12 Compactness coefficient (Cc) 𝐶𝑐 =
0.282𝑃

√𝐴
 Horton 

(1945) 

13 Circularity ratio (Cr) 𝐶𝑟 =
4𝜋𝐴

𝑃ଶ
 

Miller 
(1953) 

14 Elongation ratio (Re) 𝑅𝑒 =
1.129√𝐴

𝐿𝑏
 

Schumm 
(1956) 

15 Drainage density (Dd)(Km/Km2) 𝐷𝑑 = ෍ ෍
𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑡𝑟𝑒𝑎𝑚 𝑜𝑟𝑑𝑒𝑟𝑠 (𝐿𝑢)

𝐴

ே

௜ୀ଴

௞

௜ୀଵ

 
Strahler 
(1957) 

16 Stream frequency (F) (number/km2) 𝐹 = ෍
𝑁𝑢

𝐴

௞

௜ୀଵ

 
Horton 
(1932) 

17 Constant of channel maintenance (Ccm) 
(km2/km) 

𝐶𝑐𝑚 =
1

𝐷𝑑
=

𝐴

∑ ∑
𝐿𝑢
𝐴

ே
௜ୀ଴

௞
௜ୀଵ

 Schumm 
(1956) 

18 Infiltration number (Ifn) 𝐼𝑓𝑛 = 𝐹x𝐷𝑑 
Farinan 
(1952) 

19 Drainage intensity (Di) 𝐷𝑖 =
𝐹

𝐷𝑑
 

Farinan 
(1952) 

20 Average length of overland flow (Lg) 
(Km)  𝐿𝑔 =

1

2𝐷𝑑
 

Horton 
(1945) 

21 Height of basin outlet (z) (m) Selected point elevation from DEM  
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ID Morphometric 
Parameter 

Formula Author 

22 Maximum height of basin (Z) (m) Selected point elevation from DEM  

23 Total basin relief (H) 𝐻 = 𝑍 − 𝑧 
Strahler 
(1952) 

24 Relief ratio (Rhl) 𝑅ℎ𝑙 =
𝐻

𝐿𝑏
 

Schumm 
(1956) 

25 Relative relief ratio (Rhp) 𝑅ℎ𝑝 =
(𝐻)(100)

𝑃
 

Melton 
(1957) 

26 Gradient ratio (Rg) 𝑅𝑔 =
𝑍 − 𝑧

𝐿𝑏
 

Sreedevi  
el al. (2005) 

27 Ruggedness Number (Rn) 𝑅𝑛 = 𝐷𝑑
𝐻

1000
 

Strahler 
(1952) 

28 Melton ruggedness number (MRn) 𝑀𝑅𝑛 =
𝐻

√𝐴
 Melton 

(1965) 

 
 

For the calculation of the morphometric parameters, the morphometric toolbox developed 

by Faris (2015) can be used in batch mode to obtain the characterization for all sub-

catchments of the model. 

 
2. Hierarchical clustering 

In the second step of the methodology, the main objective is to group sub-catchments of 

the model based on the similarity of their morphometric parameters. For this, the use of 

agglomerative hierarchical clustering is proposed. 

As described by Jain and Dubes (1988), a hierarchical clustering method is a procedure for 

transforming a proximity matrix into a sequence of nested partitions. In the agglomerative 
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hierarchical approach, each data point starts as a cluster and, at each step, existing clusters 

are combined. There are different methods for this, including single linkage, complete 

linkage, average linkage and centroid method, among others. There is no a correct method 

or best method for the analysis. In practice, it is advisable to compare the results of several 

methods to take a final decision about the formation of clusters. 

The hierarchical cluster analysis can be performed using the cluster package (Maechler et 

al., 2018) in R (R Core Team, 2018). As presented in R documentation, initially this function 

assigns each object to its own cluster and then the algorithm proceeds iteratively, at each 

stage joining the two most similar clusters, continuing until there is just a single cluster (R 

Core Team, 2008). At each stage, distances between clusters are recomputed by the Lance-

Williams dissimilarity update formula according to the particular clustering method being 

used (R Core Team, 2008). 

The R function can analyse the data using different clustering methods, including those that 

are mentioned before. Table 2 presents the mathematical expressions for the main 

methods that can be used for the hierarchical clustering. Based on the definition of the 

distance between clusters, at each stage of the process the two clusters that have the 

smallest distance are combined. 
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Table 2. Mathematical expressions and descriptions of the main methods for the hierarchical 
clustering (Adapted from Pennsylvania State University, 2017) 

 

Method Definition of distance between two 
clusters 

Mathematical Expression 

Single Linkage 
Minimum distance between any single 
data point in the first cluster and any 
single data point in the second cluster.  

𝑑ଵଶ = min
௜௝

𝑑(𝑥௜, 𝑦௝) 

Complete Linkage 
Maximum distance between any single 
data point in the first cluster and any 
single data point in the second cluster. 

𝑑ଵଶ = max
௜௝

𝑑(𝑥௜, 𝑦௝) 

Average Linkage 
Average distance between data points 
in the first cluster and data points in 
the second cluster 

𝑑ଵଶ =
1

𝑘𝑙
෍ ෍ 𝑑(𝑥௜, 𝑦௝)

௟

௝ୀଵ

௞

௜ୀଵ

 

Centroid Method Distance between the two mean 
vectors of the cluster 𝑑ଵଶ = 𝑑(�̅�,𝑦ത) 

 

To facilitate the interpretation of the hierarchical clustering results, a dendrogram is an 

especially useful scheme. A dendrogram is a type of tree structure that provides a much 

easier way to understand the clustering exercise. It consists of layers of nodes, each 

representing a cluster. Lines connect nodes representing clusters which are nested into one 

another (Jain and Dubes, 1988). Figure 2 presents an example of dendrogram. 

 

 
 

Figure 2. Example of dendrogram 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 
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The objective of this procedure is to identify units of the model (sub-catchments) that share 

parameters, under the assumption that units that are grouped in the same cluster, based 

on the analysis of its morphometric parameters, also have similar hydrological parameters 

in the model. Thus, the most important aspect of this second step in the methodology is to 

decide the way the groups will be finally created. As cutting a dendrogram horizontally at 

any level defines a clustering and identifies clusters (Jain and Dubes, 1988), it will be enough 

to define a cut level of the dendrogram to establish the sub-catchments of the model that 

will belong to the same cluster. The level itself has no meaning in terms of the scale of the 

proximity matrix (Jain and Dubes, 1988), so the modeler has the responsibility to define the 

cut level based on the availability of data and the heterogeneity of the system modelled. 

After this procedure, there will be n clusters composed of m sub-catchments. The sub-

catchments in a particular group, at first, share the same hydrological parameters in the 

model. The modeler must verify that in each cluster, at least one unit of the model (sub-

catchment) has data for calibration and validation. If there are clusters without any sub-

catchment with data for calibration, these clusters must be grouped with the nearest cluster 

with data to create a calibration group. It is important to recognize that for that clusters 

that must be grouped with other clusters due to lack of information, the uncertainty is 

higher. 

 
3. Select a subset of catchments for calibration and validation 

For each cluster identified in step 2, a subset of units of the model (sub-catchments) for 

calibration must be selected. Ideally, each model will have multiple sub-catchments with 

data suitable for both spatial and temporal calibration and validation so that calibration and 

validation are possible. However, this is not always the case. 

For those groups with only one sub-catchment with data available for calibration, only 

temporal calibration and validation is possible.  In these cases, the validation will be only on 
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data from period of times not used (Klemes, 1986), so greater uncertainty of the model 

response is expected. 

In other cases, there will be more than one sub-catchment in the group with data suitable 

for spatial and temporal calibration. A decision about what sub-catchments are going to be 

used for spatial calibration, and what sub-catchments will be used for validation must be 

made. As a recommendation in the methodological procedure, three main aspects to filter 

out sub-catchments for calibration should be considered: 

 Data series length: Usually, the length of the available data in each sub-catchment 

is different. It is recommended to prioritize sub-catchments with longer data series 

for calibration. 

 Data series quality: It is essential to consider the quality of the available data. In 

many cases, even though a long set of data is available for calibration, due to 

problems in the measurement procedures or the instrumentation, some of the data 

are not good for calibration. Prior analysis about the quality of the data must be 

done for the selection of the units of the model that are going to be used in the 

calibration process. The sub-catchments with the best data quality should be 

consider as best candidates for the calibration procedure. 

 Computational time of the model: This criterion will establish the maximum number 

of sub-catchments that can be considered for simultaneous calibration of each 

group. The computational time for big macro basin models can be considerable and 

limit options for calibration of the mathematical model. The final selection of the 

number of sub-catchments in each group that will be used in the simultaneous 

calibration procedure should be a balance between the computational available 

resources, in terms of computational time and capacity, and the desirable average 

representativeness of the parameters for all the units of the model that are part of 

the same group. 
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At the end of this step, a subset of sub-catchments for spatial calibration are selected. It is 

important to notice that with the selection of the sub-catchments for calibration, the sub-

catchments for spatial validation will be automatically selected. Sub-catchments for spatial 

validation are the sub-catchments that were considered through the aspects described in 

the three main criteria for filtering, but were not selected at the end for calibration, due to 

restrictions related with data series length or computational time, but that also fulfill the 

requirements in data quality. 

 

 

4. Objective calibration  

Once the sub-catchments for calibration have been selected, the calibration procedure can 

be performed. For calibration, the use of automatic search algorithms is recommended to 

overcome the time-consuming procedure of manual calibration (Wagener et al., 2001). 

Traditionally, in the calibration stage, the parameters are estimated using a procedure 

whereby they are adjusted until the model output and the measured historical data show 

an acceptable level of agreement. To measure the agreement, usually an objective function 

is used (Wagener et al., 2001). However, one of the most important limitations in a classical 

approach to model calibration is the impossibility to find a unique best parameter set that 

obviates other feasible parameter sets (Gupta et al., 1998). To address this problem, a multi-

objective view is proposed by Gupta et al. (1998) and it is recommended as a good way to 

understand the complexity of a macro basin model. 

In regard to automatic search algorithms, Monte Carlo simulations or population-evolution-

based search strategies are good options for the procedure. Particularly, Duan et al. (1992) 

has demonstrated that the population-evolution-based Shuffled Complex Evolution (SCE-

UA) global optimization algorithm is a consistent, effective and efficient method in locating 

the globally optimal model parameters of a hydrological model (Duan et al., 1992; 
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Sorooshian et al., 1993; Luce and Cundy, 1994; Gan and Biftu, 1996; Tanakamaru, 1995; 

Tanakamaru and Burges, 1997; Kuczera, 1997).  

The use of Monte Carlo simulations or SCE-UA depends on the complexity of the model and 

again on the computational time of the model. For a complex model, a large number of 

Monte Carlo simulations may be needed to explore in an extensive way the entire 

parametric space. In this case, the use of the SCE-UA method is better. 

For each group identified in step 2, there are a set of selected sub-catchments for 

calibration, so we propose using a simultaneous calibration procedure in which the values 

of the objective functions used to evaluate the adjustment of the model in each clustered 

group are calculated simultaneously. This strategy generates a large amount of information 

suitable for analysis to define the better parameters to use in the model. 

The SCE-UA algorithm uses an objective function that must be minimized, so we propose 

the use of an average traditional objective function for this purpose. For example, the 

average of the Nash-Sutcliffe (NSE) efficiency coefficient can be calculated as the 

summation of the individual Nash-Sutcliffe of each sub-catchment selected for calibration 

(evaluated for the same set of parameters) divided by the number of sub-catchments 

involve in the procedure: 

𝑁𝑆𝐸തതതതതത=
∑ ேௌா೔

೙
೔సభ

௡
     (1) 

It must be noted that because the NSE varies between 1 (most desirable) and -∞ and the 

SCE-UA algorithm minimizes the objective function, 1-𝑁𝑆𝐸തതതതതത must be used so that the most 

desirable value would be 0.  

It is important to mention that is highly recommended to calculate different objective 

functions in the calibration procedure to have a multi-objective view of the problem and to 

have enough data to study the equifinality problem (Beven and Binley, 1992). Some of the 
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objective functions that can be used in the analysis are presented in Table 3 (𝑑௢ is the 

observed data and 𝑑௠ is the modelled data).  

Table 3. Examples of objective functions that can be used as part of the analysis 

Notation  Objective Function Equation 

NSE Nash-Sutcliffe Efficiency  1 −
∑(𝑑௢ − 𝑑௠)ଶ

∑൫𝑑௢ − 𝑑௢
തതത൯

ଶ  

APBIAS Absolute Percent Bias 
∑|𝑑௢ − 𝑑௠|

∑ 𝑑௢

∗ 100 

RBIAS Relative Percent Bias ቆ
భ

೙
∑(ௗ೘)

భ

೙
∑(ௗ೚)

− 1ቇ*100 

RMSE Root Mean Square Error ඨ
1

𝑛
෍(𝑑௢ − 𝑑௠)ଶ 

ABSERR Mean Absolute Error 
1

𝑛
෍|𝑑௢ − 𝑑௠| 

Another aspect that must be considered is that a period of time for calibration must be 

selected. It is recommended that the period should be common between all the sub-

catchments selected for calibration in each group so the simulation in the model will be 

made for the same period for the calibration procedure. The period of time left, not used 

for calibration, will be used for a first validation exercise. 

 
5. Analyse calibration results and model parameter uncertainty  

 

A deep analysis of the calibration and the estimation of uncertainty of the model 

parameters are indispensable procedures in the proposed methodological framework. A 

holistic model evaluation in this stage includes the detailed investigation of model 

performance, model structure suitability, parameter identifiability and prediction 
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uncertainty. All these analysis helps to understand the behaviour of the model and its 

performance, recognizing also its limitations and reliability of the results (Wagener et al., 

2001). 

The Monte Carlo Analysis Toolbox (MCAT; Wagener et al., 1999) is a collection of Matlab 

(Mathworks, 2017) analysis and visualisation functions integrated through a graphical user 

interface (Wagener et al., 2001a). The toolbox can be used to analyse the results from 

Monte Carlo simulations or from model optimisation methods that are based on population 

evolution techniques (e.g. SCE-UA) (Wagener et al., 1999). MCAT includes several functions 

like Regional Sensitivity Analysis (Spear and Homberger, 1980), Generalised Likelihood 

Uncertainty Estimation (GLUE) (Beven and Binley, 1992), multi-objective analysis (Gupta et 

al., 1998) and different kinds of plots to analyse parameter identifiability and interaction 

(Wagener et al., 2001a). 

Specifically, as described by Wagener et al. (2001a), the system architecture of the Monte 

Carlo Analysis Toolbox comprises: 

 Class plots 

 Dotty plots 

 2-D and 3-D surface plots 

 Dynamic identifiability analysis 

 GLUE Regional sensitivity analysis 

 GLUE Confidence limits 

 GLUE variable uncertainty 

 A posteriori parameter distributions 

 Multi-Objective (MO) Analysis 

 Multi-Objective (MO) Parameter Rankings 

 Multi-Objective (MO) Pareto Confidence Limits 

 Multi-Objective (MO) Normalized Parameter ranges 
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A complete discussion about the functionalities of MCAT is presented by Wagener et al. 

(2001a). The use of the MCAT is recommended in the methodological procedure for the 

calibration of large river basin hydrological models due to its recognized utility in the 

analysis of model calibration and structure.  

The analysis with MCAT of the Monte Carlo experiments or the population-evolution-based 

results determines the best set of parameters. Thus, for each group defined for the model, 

there will be a selected set of parameters that will characterize the entire region based on 

a simultaneous calibration procedure and an integral analysis of the results with model 

parameter uncertainty estimation. 

 
6. Temporal calibration and validation  

Following Klemes (1986), the split-sample test technique is recommended for this step in 

which the available record for each sub-catchment selected for spatial calibration is been 

split into two segments (periods), one of which has been used for calibration, and the 

second period is used for validation.  

If the available record is sufficiently long so that one half of it is suitable for calibration, it 

should be split into two equal parts, each of them should be used for calibration and 

validation (Klemes, 1986). In the case that the available data is not long enough for a half 

splitting, the record should be split in a way that the calibration period is long enough for a 

meaningful calibration and the reminder serving for validation (Klemes, 1986). 

The model should be judged acceptable only if the calibration and validation results are 

acceptable (Klemes, 1986). 
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7. Transfer calibrated parameters to sub-catchments in the defined groups  

If the results in step 6 are acceptable, meaning that the calibration and validation results 

were satisfactory, the next step is to apply the selected parameters for each group to the 

other sub-catchments that are part of the same cluster, as defined in step 2, but that were 

not used for the calibration procedure, either because there are no data available in the 

sub-catchment for calibration or because the sub-catchment was selected for the second 

validation following criteria proposed in step 3. 

At the end of this step, all sub-catchments in the model must have calibrated parameters 

according to their respective clusters. 

  

8. Validate on data that is available in sub-catchments not used in the calibration  
 

A final validation of the model must be done in sub-catchments with available data but that 

were not selected for the calibration procedure. In all basins that have measured data, a 

simulation with the calibrated parameters that were assigned in step 7 must be performed 

and the results must be evaluated to establish its acceptability. 

3. Results and discussion 

The proposed calibration methodology was tested in a model for the Magdalena-Cauca 

macro basin in Colombia, developed in WEAP (Water Evaluation and Planning) (Stockholm 

Environmental Institute, Stockholm, Sweden). The characteristics of the model are 

summarised in Table 4. 
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Table 4. Description of the WEAP Magdalena-Cauca Model 
Characteristic Description 

Modelling Software Water Evaluation and Planning (WEAP) (SEI, 
2016).  

Modelling Domain 
Magdalena-Cauca rivers represented as 391 
hydrological units 

Hydrological Model Soil Moisture Model 

River Units 194 

Diversions 19 

Large Scale Infrastructure 

Hydropower development scenarios: 
A. Baseline 2016: 33 projects 
B. Full development portfolio: 128 projects 

(120 reservoirs and 8 run-of-river) 
 

Aquifer System 
24 main units identified in underground water 
map of Colombia. 
 

Resolution and temporal extent Monthly, 30 years of simulation 

The model was calibrated and validated according to the proposed methodological 

framework (section 2). A brief description of the procedure and the main results are 

described below. 

 
1. Calculate morphometric parameters 

All 391 hydrological units (sub-catchments) of the model were characterized by the 28 

morphometric parameters described in Table 1, using the morphometric toolbox for ArcGIS 

(Faris, 2015). The range of values obtained in the analysis are presented in  

Table 5. 
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Table 5. Results for morphometric characterization of the units of the WEAP Magdalena-Cauca 
Model 

ID Morphometric 
Parameter 

Higher Value Lower Value 

1 Total basin area (A) (Km2) 7938.01 20.28 
2 Total basin perimeter (P) (Km) 500.41 19.58 
3 Basin length (Lb) (Km) 164.55 8.67 
4 Fitness ratio (Rf) 1.57 0.12 
5 Form factor (Ff) 1.22 0.02 
6 Shape factor (Sf) 51.32 0.82 
7 Relative perimeter (Rp) 17.28 1.04 
8 Length area relation (Lar) 303.84 8.52 
9 Rotundity coefficient (Rc) 40.31 0.65 

10 Mean basin width (Wb) 75.41 1.53 
11 Drainage texture (Dt) 1.33 0.04 
12 Compactness coefficient (Cc) 2.63 1.16 
13 Circularity ratio (Cr) 0.74 0.14 
14 Elongation ratio (Re) 1.25 0.16 
15 Drainage density (Dd)(Km/Km2) 0.91 0.17 
16 Stream frequency (F) (number/km2) 0.14 0.02 
17 Constant of channel maintenance (Ccm) (km2/km) 6.04 1.10 
18 Infiltration number (Ifn) 0.10 0.01 
19 Drainage intensity (Di) 0.51 0.05 
20 Average length of overland flow (Lg) (Km)  3.03 0.55 
21 Height of basin outlet (z) (m) 3076 -34 
22 Maximum height of basin (Z) (m) 5543 14 
23 Total basin relief (H) 5530 39 
24 Relief ratio (Rhl) 0.16 0.00 
25 Relative relief ratio (Rhp) 6.38 0.02 
26 Gradient ratio (Rg) 0.16 0.00 
27 Ruggedness Number (Rn) 0.18 0.01 
28 Melton ruggedness number (MRn) 0.29 0.00 

 

As shown above, there is a wide range of variability of the morphometric parameters among 

the different sub-catchments defined in the model. 
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2. Hierarchical clustering 

First, the values presented in  

Table 5 were normalized to vary between 0 and 1. With the normalized values, a hierarchical 

clustering using the complete linkage method was performed following the procedure 

described in section 2. 

The resulting dendrogram of the analysis includes all 391 elements and is very extensive. As 

an example, Figure 3 presents a part of the dendrogram corresponding to branch 13 with 

cut level at 1. 

 

 
 

Figure 3. Branch 13 of the dendrogram for the units of the WEAP Magdalena-Cauca model 
 

As shown above, with a cut level of 1.0, 25 clusters were identified. However, there is no 

data for calibration for all these clusters and therefore a grouping procedure based on the 

nearest cluster with data was performed. Branches 2, 3, 4, 5, 11, 14, 16, 17, 21 and 22 are 

the ones without data for calibration. These branches were grouped as shown in Table 6 to 

configure the final groups for the calibration procedure. 
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Table 6. Final groups for calibration 

 Cluster for Calibration  Branches 
Number of Sub-Catchments 

with Data suitable for 
Calibration in the Cluster  

1 1, 2, 3, 4, 5 1 
2 6 1 

3 7 1 

4 8 6 
5 9 6 
6 10 1 
7 11, 12 1 
8 13 1 

9 14, 15 1 

10 16, 17, 18 3 
11 19 1 

12 20, 21, 22 1 
13 23 1 
14 24 1 

15 25 1 

Based on this analysis, a higher uncertainty for the sub-catchments that are part of the 

calibration clusters 1, 7, 9, 10 and 12, is recognized because they only have one sub-

catchment with data suitable for calibration. Figure 4 shows the defined clusters. 
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Figure 4. 15 defined clusters for the WEAP Magdalena-Cauca model 
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3. Select a subset of catchments for calibration 

According to the results presented in Table 6, 12 of the 15 clusters in the WEAP Magdalena-

Cauca model have only one sub-catchment with suitable data for calibration, so the sub-

catchment with data in those 12 clusters was selected for calibration. For the other 3 

clusters, a criterion was established to determine how many sub-catchments will be used 

for the simultaneous calibration and how many will be used for spatial validation. 

First, it is important to clarify that the available data was carefully examined to determine 

if its length and quality fulfil the minimum requirements to be useful for calibration 

purposes. At least, 20 years of data should be available and the quality of available data was 

evaluated by comparing precipitation data and the measured flow data. 

Taking into account the computational time of the model, a maximum of 3 sub-catchments 

to calibrate simultaneously was adopted. In the cases that the group has 2 or 3 sub-

catchments with adequate data, it was preferred to use these sub-catchments in the 

simultaneous calibration process instead of leaving sub-catchments for spatial validation. 

Table 7 presents a summary of the selection of the sub-catchments for the calibration 

process. It is important to highlight that clusters identified in Table 7 with no additional sub-

catchments for validation are only validated temporally using the data for the period of time 

that were not used in the calibration using a split sample technique (Klemes, 1986). 
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Table 7. Selection of sub-catchments for the calibration process 

Cluster  
Number of sub-
catchments for 

Calibration 

ID of the 
catchments for 

Calibration 

Number of 
additional sub-
catchments for 

Validation 

ID of the 
catchments for 

Validation 

1 1 C_2501701 0 - 

2 1 C_2605703 0 - 

3 1 C_2601704 0 - 

4 3 
C_2614713 
C_2402706 
C_2801708 

3 
C_2118702 
C_2609704 
C_2617701 

5 3 
C_2121712 
C_2610713 
C_2615710 

3 
C_2613711 
C_2306708 
C_2206702 

6 1 C_2801711 0 - 

7 1 C_2615702 0 - 

8 1 C_2403741 0 - 

9 1 C_2614704 0 - 

10 3 
C_2402704 
C_2602721 
C_2602725 

0 - 
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11 1 C_2614704 0 - 

12 1 C_2307702 0 - 

13 1 C_2612701 0 - 

14 1 C_2401759 0 - 

15 1 C_2314704 0 - 

 

4. Objective calibration 

The calibration procedure was performed for the catchments presented in Table 7 for the 

period between 1995 and 2004 (10 Years). The SCE-UA method (Duan et al, 1992) was used 

for the calibration based on the code developed for Matlab (Mathworks, 2017). The 

objective function for the SCE-UA used the average Nash-Sutcliffe efficiency coefficient (1-

𝑁𝑆𝐸തതതതതത), but Root Mean Squared Error (RMSE) and maximum Relative Percent Bias (RBias) 

were also calculated to be later analysed with MCAT (Wagener et al., 1999). 

The parameters of the WEAP Magdalena-Cauca model that were calibrated are described 

below: 

 Albedo (%): Fraction of solar radiation striking a land class that is reflected. 

 Cloudiness Fraction (%): Fraction of daytime hours with no clouds. 

 Preferred Flow Direction (f) (unitless): Used to partition the flow out of the root 

zone layer between interflow and flow to the lower soil layer or groundwater. 

 Deep Conductivity (KDeep) (mm/month): Conductivity rate of the deep layer at full 

saturation which controls transmission of baseflow. 
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 Root Zone Conductivity (KRoot) (mm/month): Root zone conductivity rate at full 

saturation which will be partitioned, according to Preferred Flow Direction, 

between interflow and flow to the lower soil layer. 

 Runoff Resistance Factor (RRF) (unitless): Used to control surface runoff response. 

Related to factors such as leaf area index and land slope. 

 Soil Water Capacity (Z1) (mm): Effective water holding capacity of upper soil layer. 

 Initial Z1 (Z1_Ini) (%): Initial value of Z1 at the beginning of a simulation. Relative 

storage given as a percentage of the total effective storage of the root zone water 

capacity. 

 Deep Water Capacity (Z2) (mm):  Effective water holding capacity of lower soil layer.  

 Initial Z2 (Z2_Ini) (%): Initial value of Z2 at the beginning of a simulation. Relative 

storage given as a percentage of the total effective storage of the deep water 

capacity. 

The best sets of parameters, based on the average Nash-Sutcliffe efficiency coefficient in 

each group, are presented in Table 8. 

Table 8. Best set of parameters for each group, based on the average Nash-Sutcliffe efficiency 

Group 
Albedo 

(%) 

Cloudiness 
Fraction 

(%) 
f 

KDeep 

(mm/month)  
KRoot 

(mm/month) 
RRF 

Z1 
(mm) 

Z1_Ini 
(%) 

Z2 
(mm) 

Z2_Ini 
(%) 

1 22.0 1.6 0.65 473.1 360.1 0.9 307.2 19.9 66.4 31.4 

2 21.0 6.0 0.93 494.9 139.5 0.4 293.5 30.0 47.0 35.0 

3 22.0 97.0 0.91 346.9 361.7 8.2 239.9 30.0 412.8 35.0 

4 20.0 6.6 0.69 327.5 332.9 7.4 241.0 53.0 129.3 40.0 

5 17.3 91.6 0.70 77.2 132.8 10.4 439.5 48.4 334.7 44.2 

6 20.0 90.0 0.31 304.3 93.5 11.3 259.9 30.0 484.0 35.0 

7 17.0 15.0 0.19 233.7 74.0 4.3 352.4 30.0 133.8 35.0 

8 22.0 97.0 0.67 99.6 30.0 16.3 312.9 30.0 135.1 35.0 

9 20.7 0.8 0.30 80.2 392.2 3.2 70.3 58.5 318.7 33.8 

10 16.8 97.6 0.41 200.5 90.1 18.4 420.0 55.1 250.8 39.5 
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Group 
Albedo 

(%) 

Cloudiness 
Fraction 

(%) 
f 

KDeep 

(mm/month)  
KRoot 

(mm/month) 
RRF 

Z1 
(mm) 

Z1_Ini 
(%) 

Z2 
(mm) 

Z2_Ini 
(%) 

11 21.6 10.2 0.62 291.8 293.9 4.0 318.2 47.6 120.4 28.2 

12 20.5 4.8 0.73 348.0 476.1 10.8 340.2 59.5 329.8 33.3 

13 20.0 15.0 0.14 467.5 147.4 10.7 491.0 30.0 92.62 35.0 

14 21.0 66.0 0.90 24.1 87.9 1.7 259.3 30.0 21.9 35.0 

15 20.0 20.0 0.70 277.8 101.9 19.0 189.91 30.0 350.4 35.0 

The results of the calculated objective functions in the calibration, for the sets of 

parameters shown in  Table 8, are presented in Table 9. 

Table 9. Calculated objective functions in calibration 
Group 𝑁𝑆𝐸തതതതതത 𝑅𝑀𝑆𝐸തതതതതതതത RBIASmax 

1 0.72 602.7 -4.6% 

2 0.60 505.3 -4.3% 

3 0.67 437.6 -0.1% 

4 0.65 319.5 26.2% 

5 0.69 146.8 3.7% 

6 0.45 268.9 7.7% 

7 0.71 336.0 1.6% 

8 0.65 63.7 9.3% 

9 0.59 279.9 -11.4% 

10 0.69 290.1 23.2% 

11 0.83 226.0 -1.6% 

12 0.72 388.6 -0.1% 

13 0.61 425.4 -2.7% 

14 0.70 183.2 -1.2% 

15 0.59 500.0 -0.8% 
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As an example of the calibration results, Figure 5 presents the comparison between the 

observed streamflow and modelled streamflow for the sub-catchments selected for 

calibration in cluster 5. 
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Figure 5. Comparison between observed streamflow and modelled streamflow for calibration for 

sub-catchments in cluster 5 
 
 
 
 

5. Analyse calibration results and parameter uncertainty  

For the analysis of the calibration results, the MCAT (Wagener et al., 2001a) was used. As 

the results obtained in the analysis are very extensive, the graphs and outputs of MCAT are 

focused on the calibration of group 5 as an example of the kind of analysis that are 

recommended in the methodological framework.   

Figure 6 presents the results in dotty plots. Dotty plots represent a projection for the 

parameter space into 1 dimension.  Each dot represents the objective of variable value 

associated with a single parameter set. If the surface of the dotty plot has a clearly defined 

minimum, the parameter can be considered to be well identified (Wagener et al., 2001a). 

In this case, all parameters of the model are identifiable, which means that the structure of 

the Soil Moisture Model is well parametrized. The red dots on the plots identify the 

optimum set of parameters obtained in the calibration procedure. 
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Figure 6. Dotty plots objective function (1-𝑁𝑆𝐸തതതതതത). Calibration of cluster 5. 

To evaluate the sensitivity of the model parameters, the Regional Sensitivity Analysis (RSA; 

Homberger and Spear, 1981) was used. In this method, sensitivity is defined as the effect of 

the parameters on overall model performance (Wagener et al., 2001a). The results show 

that all parameters are sensitive in the model because different parameter values affect 

model results (see Figure 7). 

 

 
Figure 7. Regional sensitivity plot (1-𝑁𝑆𝐸തതതതതത) 
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As an indication of the spread of output time-series, the class plot was used. This plot 

displays 10 sample simulation time series outputs, classified considering the objective 

function (Wagener et al., 2001a). The results for sub-catchments used for calibration in 

cluster 5 are presented in Figure 8. 

 
 

 
 
 
 
 
 

S
tr

ea
m

fl
ow

 (
m

m
) 



 
 
 
 
 

  
September 2021                                          Volume 8, Issue 4 
 

 

 
Figure 8. Class plot for sub-catchments for calibration in cluster 5 

The output uncertainty was estimated using the Generalised Likelihood Uncertainty 

Estimation (GLUE) (Beven and Binley, 1992). In MCAT, the plot displays the time-series 

output with associated confidence intervals. As presented by Wagener et al. (2001a), for 

each point, a cumulative frequency distribution is generated using the selected objective 

and the confidence intervals calculated using linear interpolation. The results for sub-

catchments used for calibration in cluster 5 are presented in Figure 9. 
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Figure 9. GLUE output uncertainty limits for sub-catchments for calibration in cluster 5 

Finally, MCAT offers multi-objective plots. These are scatter plots of each objective versus 

every other objective function, A large scatter indicates that the objectives are unrelated, 

whereas a clear pattern indicates that the objective functions attempt to fit the model to 

the same part of the observed data (Wagener et al., 2001a). The objective function names 

are shown in the diagonal. The plots above the diagonal shows the correlation coefficient 

between the objective functions. As an example, Figure 10 shows the multi-objective plot 

for sub-catchments 2121712, 2610713 and 2615710 with 1-NSE, APBias and RMSE objective 

functions. 
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Figure 10. Multi-Objective plot 
 

6. Validation on data from period of times not used  

Based on the criteria proposed by Klemes (1986), a validation with split-sample was 

performed. The validation period was from 2005 to 2014. Table 10 presents the calculated 

objective functions on data for the period of time not used in calibration. 

 
Table 10. Calculated objective functions in validation on data from period of times not used for 

calibration 
Group 𝑁𝑆𝐸തതതതതത 𝑅𝑀𝑆𝐸തതതതതതതത RBiasmax 

1 0.80 550.6 -4.2% 

2 0.47 347.5 -21.9% 

3 0.64 562.7 5.4% 

4 0.63 406.8 14.6% 

5 0.51 97.8 -4.1% 

6 0.43 297.4 16.1% 

7 0.65 518.4 -19.1% 

8 0.76 116.5 -2.8% 

9 0.68 310.4 -6.9% 
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Group 𝑁𝑆𝐸തതതതതത 𝑅𝑀𝑆𝐸തതതതതതതത RBiasmax 

10 0.63 322.5 12.7% 

11 0.75 321.0 -7.1% 

12 0.83 171.6 5.9% 

13 0.63 327.2 -4.4% 

14 0.78 231.0 5.1% 

15 0.57 506.3 -14.4% 

Considering the values of the different objective functions, the results are acceptable for 

the validation procedure. As an example, Figure 11 presents the comparison in the 

validation period for the sub-catchments 2402704, 2602721 and 2602725 in cluster 10, 

between observed streamflow and modelled streamflow. 
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Figure 11. Validation results for sub-catchments in cluster 10 

 
7. Transfer calibrated parameters to sub-catchments in the defined clusters  

 

In this step, the parameters values presented in Table 8 were assigned to each sub-

catchment of the model according to the cluster that it was in. At the end of this procedure, 

all sub-catchments in the model have the parameters obtained in the procedure and the 

model is ready for a final spatial validation based on data that are available in the model 

units that were not used in the calibration. 

 
8. Validate on data that is available in sub-catchments not used in the calibration  
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Finally, a validation on data that are available in sub-catchments not used in the calibration 

was performed.  In the case of the WEAP Magdalena-Cauca model, only 2 clusters have 

information that allows this procedure (clusters 4 and 5). The calculated objective functions 

in this validation are presented in Table 11. 

 
Table 11. Calculated objective functions in validation on sub-catchments not used in the 

calibration  
Cluster 𝑁𝑆𝐸തതതതതത 𝑅𝑀𝑆𝐸തതതതതതതത RBiasmax 

4 0.45 470.2 -9.4% 

5 0.48 371.2 -25.1% 

 

The results obtained are acceptable and shows that the methodology is suitable for the 

calibration of the model. As an example, Figure 16 presents the validation for the sub-

catchments 2206702, 2306708 and 2613711 in cluster 5. It is important to notice that for 

the validation the complete period of time was analysed from years 1995 to 2014. 
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Figure 12. Validation results for group 5 on data in sub-catchments not used in calibration 

  

0

10

20

30

40

50

60

70

80

90

100

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

S
tr

e
a

m
flo

w
 (

m
3
/s

)

Time (Years)

Observed
Modelled

NSE = 0.44
RMSE = 89.3
RBIAS = -19.3%

Sub-catchment 2306708

0

5

10

15

20

25

30

35

40

45

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

S
tr

e
am

flo
w

 (
m

3 /
s)

Time (Years)

Observed
Modelled

NSE = 0.51
RMSE = 45.5
RBIAS = -8.8%

Sub-catchment 2306708
NSE=0.51 NSE=0.44 



 
 
 
 
 

  
September 2021                                          Volume 8, Issue 4 
 

4. Conclusions 

In this paper a proposed methodological framework for the calibration of a large river basin 

hydrological model is presented. The methodology consists in 8 steps: Calculate 

morphometric parameters, hierarchical clustering, select a subset of sub-catchments for 

calibration, objective calibration, analyse calibration results and model parameter 

uncertainty, validation on data from period of times not used, transfer calibrated 

parameters to sub-catchments in the defined groups and validate on data that is available 

in sub-catchments not used in the calibration. 

The methodology was tested in the calibration of a WEAP Magdalena-Cauca model in 

Colombia with acceptable results in calibration (Nash-Sutcliffe efficiency coefficient 

between 0.83 and 0.45) and validation (Nash-Sutcliffe efficiency coefficient between 0.83 

and 0.43 in validation). In this case, the entire model units were classified in 15 groups 

according to the hierarchical clustering exercise. Though the Magdalena-Cauca basin is well 

monitored and has the best hydrological information available in Colombia, there is a lack 

of information and the uncertainty of the model response is from middle to high. It is 

important to highlight the importance of good available data for the procedure to reduce 

the uncertainty in the response not only in quantity, but also in quality. Other biophysical 

variables, such as climate, geology and land cover, may be used to complement the 

morphometric parameters used in this study for the clustering analysis, that could also 

improve the performance of the calibration framework.  
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