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Abstract
Brain infection by the fungus Cryptococcus neoformans results in an estimated
500,000 human deaths per annum. Colonization of the central nervous system
(CNS) by C. neoformans causes different clinical syndromes that involve interaction
of a number of fungal components with distinct brain cells. In this manuscript, our
literature review confirmed the notion that the Cryptococcus field is expanding
rapidly, but also suggested that studies on neuropathogenesis still represent a small
fraction of basic research activity in the field. We therefore discussed anatomical
and physiological aspects of the brain during infection by C. neoformans, in addition
to mechanisms by which brain resident cells interact with the fungus. This review
suggests that multiple efforts are necessary to improve the knowledge on how C.
neoformans affects brain cells, in order to enable the generation of new therapeutic
tools in the near future.

This review was first published in SciELOI in August 2015
(https://doi.org/10.1590/0001-3765201520140704).
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RESUMO

Infecção do cérebro pelo fungo Cryptococcus neoformans resulta em um estimado
de 500.000 mortes de pessoas por ano. A colonização do sistema nervoso central
(SNC) pelo C. neoformans causa diversas síndromes clínicas que envolvem a
interação de um número de componentes de fungo com distintas células do
cérebro. Nesse artigo, nossa revisão da literatura confirmou a ideia de que a área de
Cryptococcus está em rápida expansão, mas também sugeriu que os estudos
sobre neuropatogênese ainda representam uma fração pequena da atividade de
pesquisas básicas no campo. Nós, portanto, discutimos aspectos anatômicos e
fisiológicos do cérebro durante a infecção pelo C. neoformans, além dos
mecanismos pelos quais as células residentes do cérebro interagem com o fungo.
Essa revisão sugere que esforços múltiplos são necessários para aprofundar o
conhecimento sobre como o C. neoformans afeta as células do cérebro, para
permitir a geração de novas ferramentas terapêuticas em futuro próximo.

Palavras chave: Infecções Fúngicas; Cryptococcus; meningite; meningoencefalite
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INTRODUCTION

Fungal infections are now considered a neglected epidemic in HIV patients
(Armstrong-James et al. 2014). It is estimated that more than one million people die
each year because of systemic fungal infections (Armstrong-James et al. 2014).
These numbers are comparable to those determined for malaria and tuberculosis
(Park et al. 2009).

Fungal infections of the central nervous system (CNS) are highly lethal. The most
common fungal pathogen infecting the brain is Cryptococcus neoformans, an
encapsulated yeast-like pathogen that is highly efficient in causing damage to
immunosuppressed human hosts (Price and Perfect 2011). The considerable
medical importance of C. neoformans led to a huge increase in the interest of the
biomedical scientific community on this model. In the past three decades, the
number of scientific publications in the field has increased exponentially (Figure 1).
A similar profile has been observed in publications including Brazilian authors
(Albuquerque and Rodrigues 2012), which probably reflects the fact that human
cryptococcosis is the most fatal fungal infection in AIDS patients in Brazil (Prado et
al. 2009). In recent years, the medical importance of the sibling species C. gattii has
also become evident (Lester et al. 2011). C. gattii causes lethal pulmonary infections
in immunocompetent patients (Brizendine et al. 2011). Both C. neoformans and C.
gattii produce extracellular, capsular polysaccharides that are highly deleterious to
the host immune system (Zaragoza et al. 2009).

Although C. neoformans infection is directly associated with human mortality
resulting from neurological disorders, knowledge on how the fungus causes
damage to the brain is still limited, which likely correlates with the inefficacy of the
currently available regimens for treating brain cryptococcosis (Roy and Chiller 2011).
Basic research activity on Cryptococcus and cryptococcosis is not generally
focused on brain pathogenesis, as concluded from quantification of the number of
abstracts focusing on neurological cryptococcosis presented in the last (9th) edition
of the International Conference on Cryptococcus and Cryptococcosis (May 2014,
Amsterdam) (Figure 2). It is clear, therefore, that collective efforts are necessary to
connect basic knowledge on how C. neoformans affects brain cells with the
possibility of generation of new therapeutic tools. In this article, we discuss basic
aspects of the pathogenesis of neurological cryptococcosis, aiming at raising new
questions to be potentially addressed in future studies on the C. neoformans
pathogenic model.
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MELANIN AND NEUROTROPISM

C. neoformans primarily reaches the lung after inhalation of environmental cells and
disseminates to the brain in the immunosuppressed host. After penetrating host
tissues, C. neoformans can produce either latent infection or acute disease
(Chayakulkeeree and Perfect 2006). Inoculum size, virulence of the infectious strain
and the host immune status are unquestionably important for disease progress.
Therefore, the severity of cryptococcosis depends on the balance between the host
immune response and the pathogenic arsenal produced by C. neoformans
(Chayakulkeeree and Perfect 2006, Terada 2010).

The fungus produces melanin during mammalian infection (Nosanchuk et al. 1999,
Nosanchuk et al. 2000, Rosas et al. 2000). Melanin synthesis requires laccase, an
enzyme that catalyzes pigment polymerization in the presence of phenolic
compounds, such as L-DOPA (Nosanchuk et al. 2000, Zhu and Williamson 2004).
Intracellularly synthesized melanin is transferred to the cell wall (Eisenman et al.
2009), turning melanized C. neoformans cells less susceptible to antifungals,
phagocytosis, reactive oxygen and nitrogen species, antimicrobial peptides and
ultraviolet radiation (Nosanchuk et al. 2000, Rosas et al. 2000). Laccase was one of
the first virulence factors characterized in C. neoformans (Salas et al. 1996). In fact,
studies with human patients demonstrated that high laccase activity correlated with
increased survival of C. neoformans inside macrophages and in the cerebrospinal
fluid (CSF) (Sabiiti et al. 2014). The enzyme has been suggested to convert
catecholamines into potentially toxic quinines (Liu et al. 1999).

The predilection of C. neoformans for the brain has been correlated with the
presence of high concentrations of precursors for laccase activity (Nosanchuk et al.
2000, Zhu and Williamson 2004). In fact, the human brain contains abundant
concentrations of phenolic compounds, including norepinephrine,
3,4-dihydroxyphenylacetic acid, homovanillic acid, 5-hydroxyindolacetic acid,
serotonin, and dopamine (Nosanchuk et al. 2000, Sabiiti et al. 2014). The latter is a
neurotransmitter involved with the regulation of motor activity, cognitive processes,
modulation of motivational functions (reward) and defensive mechanisms (Wise and
Rompre 1989, Rodgers et al. 1994, Millan 2003). Great quantities of dopamine
receptors are found in cerebral regions including putamen and caudate nucleus
(striatum) and substantia nigra (Hurd et al. 2001), which are primarily affected by C.
neoformans (Lee et al. 1996b, Klock et al. 2009).
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BRAIN ANATOMY, PHYSIOLOGY AND CRYPTOCOCCAL
PATHOGENESIS

In this section, anatomic and morphological aspects of the brain (Figure 3) will be
discussed, highlighting the physiological roles of each brain region affected by C.
neoformans. Figure 3 also refers to regions of the brain colonized by C. neoformans,
so we recommend the reader to link textual descriptions with the anatomic features
illustrated in this figure. We will focus on this species because it primarily infects the
central nervous system (CNS), while C. gattii is more frequently associated with lung
disease (Chen et al. 2000, Galanis et al. 2010, Ngamskulrungroj et al. 2012).

Clinical studies in humans in combination with animal models of neurological
cryptococcosis (Lee et al. 1996b, Klock et al. 2009, Riet-Correa et al. 2011,
Mandrioli et al. 2002, Sharma 2010, Robertson et al. 2014) enabled the
classification of the disease into different syndromes, including meningitis,
encephalitis, meningoencephalitis, ventriculitis, increased intracranial pressure (ICP),
and space occupying lesion (i.e., cerebral abscesses, cysts and granulomas) (Lee et
al. 1996b, Klock et al. 2009, Sharma 2010, Robertson et al. 2014). According to the
National Institute for Neurological Disorders and Stroke (NINDS,
<http://www.ninds.nih.gov/>), meningitis is an infection of the meninges
accompanied by inflammation, while encephalitis corresponds to infection of the
brain parenchyma also resulting in inflammation. Since inflammatory mechanisms
usually compromise both the meninges and the parenchyma during cryptococcosis,
meningoencephalitis is a common condition in patients affected by C. neoformans
(Lee et al. 1996b, Klock et al. 2009). Infection of the ventricles has also been
reported, justifying the inclusion of ventriculitis as a clinical condition related to
cryptococcosis (Lee et al. 1996b). Space occupying lesions can be observed in
infected individuals with the formation of cysts, abscesses or granulomas during
neurological cryptococcosis (Watabe et al. 1984, Lee et al. 1996b, Kamezawa et al.
2000). Granulomas originated from C. neoformans infections are commonly called
cryptococcomas (Chen et al. 2000, Islam et al. 2013).

MENINGES

Meninges are membranes that surround the brain and the spinal cord. Three
meninges exist in mammals: dura mater, arachnoid, and pia mater (Clarke 1944,
Decimo et al. 2012). The thicker outer layer is the dura mater, which surrounds the
arachnoid. The innermost, thinner layer covering the glia is the pia mater. The
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nomenclature of leptomeninges for arachnoid and pia mater is often used (Tien et al.
1991, Chrétien et al. 2002, Decimo et al. 2012). The areas comprised between the
meninges are the epidural or extradural (between the spinal cord or skull and the
dura mater), subdural (between dura mater and arachnoid), subpial (limited by the
pia mater and the glia limitants) and subarachnoid (between arachnoid and pia
mater) spaces. C. neoformans most commonly affects arachnoid and pia mater, as
well as the subarachnoid space (Watabe et al. 1984, Lee et al. 1996b, Chrétien et al.
2002, Hoang et al. 2004, Charlier et al. 2005, Pai et al. 2009). Similar profiles are
observed in bacterial meningoencephalitis (Flexner 1907, Hoffman and Weber
2009). A common symptom in neurological cryptoccocosis is headache, which can
be accompanied by meningismus. The latter is often associated with meningeal
irritation or subarachnoid hemorrhage and is characterized by a group of clinical
manifestations that include neck stiffness and photophobia (Makadzange and
McHugh 2014, Graybill et al. 2000). Fever as a result of the host’s inflammatory
response is observed in about half of the cases (Makadzange and McHugh 2014,
Satishchandra et al. 2007, Graybill et al. 2000).

CEREBROSPINAL FLUID AND INTRACRANIAL PRESSURE

The cerebrospinal fluid (CSF) consists of an ionic solution containing several
substances to be distributed into the intracerebral environment. The CSF is
responsible for providing mechanical support to the brain, controlling the chemical
microenvironment, and protecting against acute blood pressure changes, sudden
changes in velocity during head impacts and alterations in gravity force (Laterra et
al. 1999, Strittmatter 2013).

CSF analysis after lumbar puncture (or spinal tap) is a classic tool for diagnosing
infectious diseases of the CNS, including acute and chronic meningitis and acute
meningoencephalitis (Machado et al. 2013). Cultures of CSF and analysis of soluble
cryptococcal polysaccharides consist of the standard method for the laboratory
diagnosis of neurological cryptococcosis (Mitchell and Perfect 1995, Machado et al.
2013). As reviewed by Seehusen et al. (2003), typical CSF findings in fungal
meningitis are characterized by variable opening pressure, predominance of
lymphocytes, elevated quantity of protein, and low CSF-to-serum glucose ratios.
These features are distinct from those found in bacterial and viral meningitis
(Seehusen et al. 2003). HIV-positive patients with neurological cryptococcosis tend
to have high concentrations of serum and CSF polysaccharides (Diamond and
Bennett 1974). However, cryptococcal polysaccharides frequently persist in CSF
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despite clinical improvement and negative C. neoformans cultures (Powderly et al.
1994). Importantly, it has been recently proposed (Sabiiti et al. 2014) that fungal
proliferation occurs in the brain parenchyma rather than in the CSF, which is in
agreement with the usually high CNS fungal burden (Sabiiti et al. 2014). Therefore,
CSF detection of the fungus could result from spillover from both the brain and
meninges (Sabiiti et al. 2014). This supposition is in agreement with data
demonstrating the existence of CSF flow in the brain parenchyma, which allows
clearance of the interstitial fluid (Iliff et al. 2012). CSF flow is characterized by
entrance of the fluid into the brain parenchyma via para-arterial channels of the
Virchow-Robin space (VRS), and escape along the external surface of large veins
(Iliff et al. 2013, Strittmatter 2013). Reentrance in the subarachnoid space or
drainage into the cervical lymphatic system through the cribriform plate and the
sheaths of cranial and spinal nerves are also functional in mammals (Boulton et al.
1996, Sakka et al. 2011, Strittmatter 2013).

It has been proposed in different studies that impairment of CSF resorption in the
arachnoid granulations due to the accumulation of cryptococcal polysaccharide
and/or encapsulated fungal cells resulted in increased ICP (Denning et al. 1991,
Fries et al. 2005). In fact, accumulation of cryptococcal polysaccharides can
increase osmolarity of both the CSF and interstitial fluids, promoting brain edema
and increased ICP (Goldman et al. 1995). ICP has been also linked to mannitol
production by the fungus (Megson et al. 1996, Hoang et al. 2004). Papilloedema
(visual impairment), oculomotor palsies, and vision loss are common complications
of neurologic cryptococcosis deriving from ICP in HIV patients. ICP is also linked to
loss of hearing, headaches, seizures, vomiting and altered mental status, with
consequent changes of behavior, decreased consciousness and lethargy
(Makadzange and McHugh 2014, Perfect and Bicanic 2014, Graybill et al. 2000,
Gambarin and Hamill 2002). It is clear, therefore, that ICP is related with poor
prognosis.

VASCULATURE, VIRCHOW-ROBIN SPACE (VRS) AND BLOOD-BRAIN BARRIER
(BBB)

The cerebral vasculature is peculiar because vessel penetration occurs in different
surface regions while in other organs there is a hilum for vessel penetration
(Machado 2000). The distribution of vessels also varies depending on the brain
region (Nonaka et al. 1998, 2003). Many blood vessels (arteries and veins) run within
the subarachnoid space and are associated with the leptomeninges. The pial
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arteries at the brain surface are large cerebral vessels that branch into smaller
arteries, arterioles, and capillaries. The outer layer of these arteries is separated
from the brain by the VRS (Nonaka et al. 2003, Iadecola 2004, Cipolla 2009). VRS, a
perivascular space, interacts with small arteries and arterioles while they penetrate
the surface of the brain and extend to the parenchyma. The functional roles of the
VRS include regulation of the bulk flow and drainage of interstitial fluid. The cerebral
regions with detectable VRS are the thalamus, midbrain, cerebellum, extreme
capsule, optical tract, hippocampus, the basal ganglia and cortex (Pollock et al.
1997, MacLullich et al. 2004, Groeschel et al. 2006).

Imaging analysis of the brain in cryptococcosis patients suggested that the VRS
was dilated in some of these individuals (Tien et al. 1991, Mathews et al. 1992,
Kwee and Kwee 2007). VRS dilatation in cryptococcosis patients has been
associated with the production of fungal mucoid antigens, which supposedly
correspond to capsular components (Tien et al. 1991). This mucoid material is
referred to as gelatinous pseudocyst (Tien et al. 1991, Mathews et al. 1992).
HIV-positive patients present multiple gelatinous pseudocysts with abundant C.
neoformans cells colonizing the VRS and adjacent areas, which is supposedly
caused by dissemination of the meningeal infection to perivascular spaces (Jain et
al. 2007, Corti et al. 2008, Klock et al. 2009, Vieira et al. 2013).

The VRS disappears along with increased branching and deepness of arterioles and
capillaries. Then, these deeper arterioles (intracerebral arterioles) and the capillaries
(microvessels) become intimately associated with the brain tissue (Jones 1970,
Iadecola 2004, Cipolla 2009). These capillaries have a specialized endothelial
composition that forms the blood-brain barrier (BBB). The BBB is a selective barrier
that differs from the endothelial layer of other vessels outside the nervous system
because of the absence of fenestrations and presence of tight junctions between
the endothelial cells. Moreover, the endothelial cells of the BBB are distinguished
from those in the periphery by increased mitochondrial content and minimal
pinocytotic activity (Ballabh et al. 2004, Hawkins and Davis 2005, Verkhratsky and
Butt 2007, Cipolla 2009, Stanimirovic and Friedman 2012). A complex
communication between cells that compose the BBB and others in the central
nervous system, including the microglia and oligodendrocytes, is well known
(Zlokovic 2008, Watzlawik et al. 2010, Stanimirovic and Friedman 2012). This
integrated system, which has been recently classified as the neurovascular unit,
operates to sustain brain homeostasis and functions (Ballabh et al. 2004, Hawkins
and Davis 2005, Abbott et al. 2006, Verkhratsky and Butt 2007, Zlokovic 2008).
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During the past decade, many studies have demonstrated that C. neoformans can
cross the BBB by both direct and indirect mechanisms. Direct mechanisms include
BBB passage through transcytosis of endothelial cells (Chang et al. 2004,
Casadevall 2010a). Indirect mechanisms include those by which the fungus infects
the brain through transit across the BBB inside phagocytes (Chrétien et al. 2002,
Chang et al. 2004, Charlier et al. 2009, Shi et al. 2010, Casadevall 2010a).
Mechanisms of fungal escape from infected host cells include lytic and nonlytic
exocytosis (Alvarez and Casadevall 2006, Ma et al. 2006). Passage of the fungus
between endothelial cells through paracellular transmigration has been also
suggested to occur in cryptococcosis (Chen et al. 2003, Liu et al. 2012).
Extracellular proteases might be required for degradation of the basal membrane
and, consequently, crossing of the BBB during the neurological cryptococcosis (Vu
et al. 2014, Rodrigues et al. 2003). It is also clear that fungal viability, urease
production and morphological transition are essential for C. neoformans to cross the
BBB (Casadevall 2010b, Shi et al. 2010). Variability in morphology, in fact, has been
suggested to be fundamental for the pathogenesis of C. neoformans. Independent
studies by the Nielsen and Zaragoza laboratories have demonstrated that both giant
(15 µm or higher) and micro-cells (lower than 1 µm) were found in infected tissues
(Zaragoza et al. 2010, Zaragoza and Nielsen 2013, Zaragoza 2011, Crabtree et al.
2012, Okagaki and Nielsen 2012, Okagaki et al. 2010). These studies demonstrated
that the majority of giant cells have been detected in the extracellular space, while
micro-cells have been frequently associated with the intracellular parasitism of
macrophages. Engulfment by macrophages may facilitate dissemination and brain
colonization (Casadevall 2010b).

Noteworthy, the BBB is not similarly distributed into all regions of the brain. For
instance, the circumventricular organs, which contain neurons specialized in
neurosecretion and/or chemosensitivity, are not associated with the BBB (Abbott et
al. 2006). Two additional layers regulate chemical and physical interactions between
blood and brain tissues and / or fluids. These layers consist of the arachnoid
epithelium, which forms the middle layer of the meninges, and the choroid plexus
epithelium, which is located to the ventricles. The latter are the major producers of
CSF (Lee et al. 2001, Abbott et al. 2006, Verkhratsky and Butt 2007). C. neoformans
is able to infect the choroid plexus and the ventricles, resulting in ventriculitis and/or
hydrocephalus. This condition is associated with increased ICP (Lee et al. 1996b,
Jain et al. 2007).
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BRAIN PARENCHYMA

The brain parenchyma is a highly functional tissue composed by neurons and glial
cells. An important distinction between these two cell classes is the fact that
neurons manifest high electrical excitability, while glial cells do not. The glia can be
sub-classified into macroglia, of ectodermal origin, and microglia, which derives
from the mesoderma. Macroglial cells include astrocytes, oligodendrocytes and
ependymal cells (Verkhratsky and Butt 2007). Microglial cells represent the
immunoactive components of the CNS (Verkhratsky and Butt 2007, Loane and
Byrnes 2010, Prinz and Priller 2014). Neurons and glial cells are not equally
distributed throughout the nervous tissue, which impacts anatomical organization
and important physiological functions (Lee et al. 2001, Herculano-Houzel and Lent
2005, Verkhratsky and Butt 2007).

Patients with cryptococcal encephalitis are more frequently affected in specific brain
regions, including corpus striatum (globus pallidus, putamen, and caudate nucleus),
midbrain (in the regions of substantia nigra), thalamus, cerebellum and superficial
cerebral cortex (Lee et al. 1996b, Hoang et al. 2004, Kwee and Kwee 2007, Klock et
al. 2009). The fungus also often affects the white matter (Lee et al. 1996b, Hoang et
al. 2004). Both corpus striatum and the midbrain have been seen to respond
positively to C. neoformans polysaccharides in HIV-positive patients (Lee et al.
1996a, Lee and Casadevall 1996). Importantly, these regions have large, penetrating
vessels, dopaminergic fibers (striatonigral pathway), and manifest frequent positivity
for HIV antigens (Lee et al. 1996b, Lee et al. 1996a, Lee and Casadevall 1996).

The basal ganglia, one of the major structures affected by C. neoformans, is
composed of corpus striatum (globus pallidus, putamen and caudate nucleus),
substantia nigra and the subthalamic nucleus of Luys (Leisman and Melillo 2013).
The roles of the basal ganglia are related to motor and cognitive functions (Leisman
and Melillo 2013). The previously suggested association between neurological
cryptococcosis and Parkinson’s disease (Wszolek et al. 1988) might be related to
the fact that the basal ganglia is affected in both diseases (Obeso et al. 2000,
Sharma 2010). In fact, clinical improvement after simultaneous treatment with
antifungal and anti-Parkinson agents has been reported (Wszolek et al. 1988).

It is believed that C. neoformans generally achieves the meninges after infection of
both perivascular and subaracnoid spaces, for further colonization of the brain
parenchyma (Lee et al. 1996b, Klock et al. 2009). In fact, the commonly observed
accumulation of the fungus in the perivascular space supports this hypothesis (Jain
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et al. 2007, Corti et al. 2008, Vieira et al. 2013). Another potential route for infection
of the brain parenchyma includes transit through microvessels. This haematogenous
spread could be related to colonization of the subependymal zone (Lee et al. 1996b,
Klock et al. 2009).

BRAIN CELLS AND CRYPTOCOCCAL DISEASE

During brain infection, C. neoformans can stimulate different host cells. Although the
CNS is an immune privileged anatomic site, physiopathological mechanisms can
trigger an intense brain immune response, enabling traversal of white blood cells
towards the BBB (Hickey et al. 1991). Local immune responses, however, vary
according to protocols of animal infection with C. neoformans (Blasi et al. 1992,
Huffnagle and McNeil 1999). Intracerebral infections with C. neoformans usually
stimulate primary CNS immune responses, while protocols resulting in subsequent
brain infections (e.g. intravenous, intranasal and intratracheal) usually induce
secondary CNS responses (Blasi et al. 1992, Huffnagle and McNeil 1999). The
immune response activated in the CNS can include infiltration of CD4+ and CD8+ T
cells, B cells, macrophages and neutrophils, as well as activation of resident cells,
including the microglia, astrocytes, and endothelial cells (Blasi et al. 1995a, Lee et
al. 1995a, Buchanan and Doyle 2000, Maffei et al. 2004). CNS cells, which express
major histocompatibility complex classes I and II (MHC I and II) molecules and
complement receptors, are able to phagocytize fungal cells and produce cytokines,
chemokines and nitric oxide (NO) in response to C. neoformans antigens (Aguirre et
al. 1995, Blasi et al. 1995a, Lee et al. 1995a, Huffnagle and McNeil 1999, Buchanan
and Doyle 2000, Aguirre and Miller 2002, Maffei et al. 2004).

The inflammatory response in the CNS establishes later in comparison to other
anatomic sites, indicating a possible activation of T cells peripherally for further
entrance in the CNS (Goldman et al. 1996). In fact, cryptococcomas or
multinucleated giant cells containing C. neofomans are observed in the brain of
human patients (Lee et al. 1996b, Kamezawa et al. 2000, Klock et al. 2009, Li et al.
2010, Edelman et al. 1996). Additionally, intracisternal inoculation of rats with the
fungus resulted in granuloma formation in association with the meninges, including
the presence of CD4+ and CD8+ T cells and CD11b/c+ (Goldman et al. 1996).

Sequential steps in the immunopathogenesis of neurological cryptococcosis have
been suggested in an animal model of C. neoformans fungemia (Chrétien et al.
2002). This model revealed moderate colonization of perivascular spaces 3 days
after infection, without inflammatory infiltrates (Chrétien et al. 2002). This initial
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pathogenic profile was followed, on day 8 post-infection, by formation of microcysts
and induction of leptomeningitis, with discrete inflammatory infiltrates mainly
composed of CD4+ and CD8+ T cells and minor populations of B cells, astrocytes
and activated microglial cells (Chrétien et al. 2002). On day 15 post-infection, severe
inflammation with numerous CD4+ and CD8+ T cells, macrophages and rare B cells
was observed in association with the leptomeninges and inner sites of the brain.
Gliosis and activation of microglial cells were also observed (Chrétien et al. 2002). In
mice that recovered from the disease, sterile granulomatous lesions were observed
on day 40-post infection, with positive reactions for capsular polysaccharides.
These fungal antigens were also found around granulomas and inside astrocytes,
microglia and leptomeningeal macrophages (Chrétien et al. 2002). These results
were correlated with those found in infected human brains, except for the detection
of CD4+ T cells (Chrétien et al. 2002). This observation is in agreement with the
general immunosuppression observed in HIV patients (Mody et al. 1990, Chrétien et
al. 2002). Similar models have been established for determination of the temporal
variation in cytokine responses. In these models, brain cytokines induced in
response to C. neoformans infection included IL-1α, IL-1ᵝ, IL-4, IL-6, IL-10, IFN-γ,
and TNF-α, as well as inducible nitric oxide synthase (iNOS) (Maffei et al. 2004). On
day 1 after infection, IL-1 α, TNF- α, and iNOS were elevated, while IL-4, IL-6, and
IFN- γ were induced after day 5 post-infection (Maffei et al. 2004). IL-1ᵝ and IL-10
predominated after seven days of infection (Maffei et al. 2004).

MICROGLIAL CELLS

Most of the studies about C. neoformans interactions with the CNS have focused on
microglial cells, the most prevalent immune effectors in the brain. Microglial cells are
different from other phagocytes in a number of aspects (Prinz and Priller 2014),
including cellular origin and longevity, among others. These cells are primary
mediators of the CNS innate immune response (Loane and Byrnes 2010, Prinz and
Priller 2014), with a consequent key role in maintaining homeostasis of the brain.
However, the CNS contains other phagocytes, including perivascular cells,
meningeal macrophages, choroid plexus macrophages and dendritic cells (Prinz
and Priller 2014). Blood-derived dendritic cells and bone marrow-derived
macrophages (myeloid cells) also co-exist in the brain (Loane and Byrnes 2010,
Prinz and Priller 2014).

Although microglial cells are found in all parts of the brain, their distribution is not
uniform (Verkhratsky and Butt 2007). They are more abundant in the hippocampus,
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olfactory telencephalon, corpus striatum and substantia nigra (Verkhratsky and Butt
2007). C. neoformans cells are usually distributed into corpus striatum and basal
ganglia, where dopaminergic neurons are abundant (Lee et al. 1996b, Lee and
Casadevall 1996, Klock et al. 2009). Similarly to other macrophages, microglial cells
express pattern recognition receptors (PRRs). These receptors are able to detect
exogenous pathogen-associated molecular patterns (PAMPs) and endogenous
danger-associated molecular patterns (Figdor and van Spriel 2010). The C.
neoformans major PAMPs characterized so far are capsular polysaccharides and
mannoproteins (Figdor and van Spriel 2010), which are recognized by toll-like
receptors (TLRs) and mannose receptors (MRs), respectively (Figdor and van Spriel
2010). Microglial cells also express receptors for complement components,
cytokines, chemokines, immunoglobulins Fc, thrombin and scavengers, as well as
receptors for glutamate, GABA, and ATP (Kopp and Medzhitov 2003, Takeda and
Akira 2004, Verkhratsky and Butt 2007, Loane and Byrnes 2010).

Microglial cells are promptly activated in response to brain injuries (Verkhratsky and
Butt 2007, Loane and Byrnes 2010, Prinz and Priller 2014). As observed for other
phagocytes, microglial cells can become polarized into M1 (classically activated
microglia) and M2 (alternatively activated microglia) like phenotypes. These patterns
are associated with the type of response triggered by the microglia (Verkhratsky and
Butt 2007, Loane and Byrnes 2010, Prinz and Priller 2014). Activated microglial cells
are efficient in the production of pro-inflammatory cytokines (M1-like phenotype),
including IL-1ᵝ, TNF-α, IL-6 and IL-8 (Verkhratsky and Butt 2007, Prinz and Priller
2014) and chemokines (Verkhratsky and Butt 2007), enabling the recruitment of
other brain macrophages and leukocytes from the bloodstream following activation
of the M1-like phenotype (Prinz and Priller 2014). Depending on the microbial
stimulus, microglial and other brain phagocytes can produce an anti-inflammatory
response (M2-like phenotype) with production of IL-10, IL-4 and IL-13 (Verkhratsky
and Butt 2007, Prinz and Priller 2014). This profile is usually required for removal of
debris and stimulation of tissue regeneration, including recruitment of progenitor
cells for remyelination (Prinz and Priller 2014).

Fc receptors (FcRs) of microglial cells have also been implicated in the pathogenic
steps required for interaction with C. neoformans. The microglial receptors FcγRI
and FcγRIII are required for production of the monocyte chemoattractant protein 1
(MIP-1a) in response to C. neoformans components in processes that require
activation of extracellular signal-regulated kinase (ERK) and nuclear factor κB
(NF-κB) signaling components (Song et al. 2002). In fact, both human and murine
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microglial cells are able to phagocytize acapsular or opsonized C. neoformans (Blasi
et al. 1992, Lee et al. 1995b, Barluzzi et al. 1998). Opsonized C. neoformans cells
proliferate and produce polysaccharides within the phagolysosome of human
microglial cells (Lee et al. 1995b), which has been further confirmed in models
testing other phagocytes (Feldmesser et al. 2000, Tucker and Casadevall 2002,
Alvarez and Casadevall 2006, Ma et al. 2006). Acapsular yeast cells are more
susceptible than the encapsulated forms of C. neoformans to the antifungal activity
of murine microglial cells (Barluzzi et al. 1998). Considering that C. neoformans cells
are hypocapsular in the brain (Rivera et al. 1998), this observation might reflect an
important mechanism to control fungal proliferation during neurological
cryptococcosis. In fact, a number of studies suggest that capsular components are
not efficient stimulators of microglial cytokine responses, such as TNF-α and IL-8
(Barluzzi et al. 1998, Lipovsky et al. 1998). Pigmentation, on the other hand, is
apparently required for resistance against the antimicrobial activity of microglial cells
(Blasi et al. 1995b). The GPR34 receptor is also highly expressed in microglial cells,
as well as in granulocytic and monocytic cells (Bedard et al. 2007, Liebscher et al.
2011). This receptor, which is primarily involved with cellular chemotaxis (Bedard et
al. 2007, Liebscher et al. 2011) cell motility and phagocytosis (Preissler et al. 2014)
was demonstrated to be required for the control of animal cryptococcosis
(Liebscher et al. 2011).

MACROGLIAL CELLS: ASTROCYTES AND OLIGODENDROCYTES

Astrocytes have multiple functions. They are important for brain physiology and
development, as well as for control or progress of pathologic events (Verkhratsky
and Butt 2007, Abbott et al. 2006). Astrocyte functions include regulation of
synaptogenesis, maintenance of the functional architecture of the brain, BBB
genesis, regulation of pH and osmolarity and participation in neuronal-glial signaling
(Verkhratsky and Butt 2007). Astrocytes also express pattern recognition receptors,
including TLR and MR (Burudi et al. 1999, Gurley et al. 2008). Other astrocyte
receptors include neurotransmitter- and cytokine-binding proteins (Verkhratsky and
Butt 2007, Verkhratsky 2009). The role of astrocytes in neurological cryptococcosis
is poorly understood. In vitro experiments with human astrocytes have showed that
stimulation of these cells with IL-1ᵝ and IFN-γ followed by challenge with C.
neoformans resulted in inhibition of fungal growth by nitric oxide-dependent
mechanisms (Brosnan et al. 1994, Lee et al. 1994). Moreover, in vivo animal
experiments have shown brain astrocytes surrounding C. neoformans (Lee et al.
1996b, Liu et al. 2014).
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Oligodendrocytes are responsible for producing the myelin sheaths that cover the
axons in the CNS (Verkhratsky and Butt 2007). This process of myelination is
important for electrical conductivity of the neurons (Verkhratsky and Butt 2007).
Olygodendrocytes are found primarily in the white matter of the brain, since they are
associated with axons (Velumian and Samoilova 2013). Except for the early
suggestion that oligondendrocytes can accumulate cryptococcal polysaccharides
during brain infection (Hirano et al. 1965), the role of these cells in neurological
cryptococcosis is unknown.

NEURONS

Neurons are the excitatory cells of the CNS. They are generally able to respond to
external stimulation by generating action potential, which is propagated through the
neuronal network (Verkhratsky and Butt 2007). The communication between
neurons and other cells can be of either electric or chemical natures (Verkhratsky
and Butt 2007).

Fungal encephalitis is characterized by strong microglial activation and astrocytes
proliferation in association with neuronal damage and reduced ability to repair
affected cells (Tauber et al. 2014). Brain inflammation can be severe, depending on
the regulation of apoptotic inflammatory cells and neurons (Neal and Gasque 2013).
Glial cells activate death-signaling pathways to stimulate apoptosis of neutrophils,
lymphocytes and damaged neurons (Neal and Gasque 2013). Live neurons can also
be phagocytized by microglial cells (phagoptosis) under conditions of inflammation
(Brown and Neher 2014). It has been demonstrated that NO production by
astrocytes results in inhibition of C. neoformans growth (Brosnan et al. 1994).
However, neurons are also susceptible to NO activity (Stewart et al. 2000). Although
this observation might suggest mechanisms of neuronal damage during
neurological cryptococcosis, it still requires experimental confirmation.

BRAIN MICROVASCULAR ENDOTHELIAL CELLS (BMEC)

Neurological cryptococcosis requires crossing of the BBB by C. neoformans. The
mechanisms by which C. neoformans interacts with brain microvascular endothelial
cells (BMEC) are multiple and directly influenced by the fungal molecular arsenal,
including hydrolytic enzymes, inositol and extracellular vesicles (Huang et al. 2012,
Liu et al. 2013, Vu et al. 2014, Xu et al. 2014).

Sabiiti and May (2012) suggested that the association between fungal cells BMEC is
not a frequent event. In their model, binding levels of C. neoformans to BMEC were
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low, but the percentage of internalization fungal cells was relatively high (Sabiiti and
May 2012). This observation led to the hypothesis that, in neurological
cryptococcosis, a low quantity of cryptococcal cells can cross the BBB, which
would be compensated by high fungal proliferation in the brain parenchyma (Sabiiti
and May 2012). The capsule is apparently not directly involved in binding and
uptake of C. neoformans by BMEC (Sabiiti and May 2012). In fact, crossing of the
BBB by the acapsular and encapsulated yeasts are apparently equivalent (Shi et al.
2010).

CONCLUSIONS AND PERSPECTIVES

Studies on C. neoformans pathogenesis have classically focused on how capsular
structures, melanin and extracellular proteins modulate the biology of immune
effector cells. The role of these molecules and other potential virulence factors on
brain physiology and, most importantly, neurological behavior is unknown. The
difficulties in treating human cryptococcosis and the limited knowledge on how the
fungus causes damage to the brain suggest that collective efforts are required to
identify new mechanisms by which C. neoformans interact with CNS cells and how
the host responds to individual fungal antigens. In this context, our literature review
and recent analysis of the most evident scientific interests of the Cryptococcus
community suggest the need for more intense research activity focused on the
neurological response to C. neoformans infections.
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Figures

Figure 1. Pubmed-indexed papers on Cryptococcus and / or related brain diseases
published between 1945 and 2014. The annual number of papers was obtained after a
Pubmed (http://www.ncbi.nlm.nih.gov/pubmed/) search using the keywords listed on the
top of the Figure. Increasing trends were observed in all cases. Article quantification in
Cryptococcus-related brain diseases (meningitis and meningoencephalitis) is likely
overestimated, considering that the terms commonly used for pathology description are
widely used to introduce regular articles and reviews in the Cryptococcus field.
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Figure 2. General distribution of research activity in the area of Cryptococcus and
cryptococcosis. Abstracts presented in the most recent international conference on
Cryptococcus and cryptococcosis (May 2014, Amsterdam) were individually analyzed and
classified into general topics or brain disease and/or pathogenesis. This analysis revealed
that studies on brain disease predominated in the clinical area, which probably reflects the
fact that meningitis and meningoencephalitis are the most serious clinical conditions in
human cryptococcosis. In basic research, however, studies on brain disease and/or
pathogenesis composed a minor fraction of scientific activity.
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Figure 3. General view of the brain anatomy and areas affected by C. neoformans. A. Brain
sagittal section and structures associated with the CSF. B. Coronal section of skull,
meninges and parenchyma. C. Transversal section of the brain capillary and structural
organization of the blood-brain barrier.
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